{"title":"Extensive composable entropy for the analysis of cosmological data","authors":"Constantino Tsallis , Henrik Jeldtoft Jensen","doi":"10.1016/j.physletb.2024.139238","DOIUrl":null,"url":null,"abstract":"<div><div>In recent decades, an intensive worldwide research activity is focusing both black holes and cosmos (e.g. the dark-energy phenomenon) on the basis of entropic approaches. The Boltzmann-Gibbs-based Bekenstein-Hawking entropy <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>B</mi><mi>H</mi></mrow></msub><mo>∝</mo><mi>A</mi><mo>/</mo><msubsup><mrow><mi>l</mi></mrow><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> (<em>A</em>≡ area; <span><math><msub><mrow><mi>l</mi></mrow><mrow><mi>P</mi></mrow></msub><mo>≡</mo></math></span> Planck length) systematically plays a crucial theoretical role although it has a serious drawback, namely that it violates the thermodynamic extensivity of spatially-three-dimensional systems. Still, its intriguing area dependence points out the relevance of considering the form <span><math><mi>W</mi><mo>(</mo><mi>N</mi><mo>)</mo><mo>∼</mo><msup><mrow><mi>μ</mi></mrow><mrow><msup><mrow><mi>N</mi></mrow><mrow><mi>γ</mi></mrow></msup></mrow></msup><mspace></mspace><mspace></mspace><mo>(</mo><mi>μ</mi><mo>></mo><mn>1</mn><mo>;</mo><mi>γ</mi><mo>></mo><mn>0</mn><mo>)</mo></math></span>, <em>W</em> and <em>N</em> respectively being the total number of microscopic possibilities and the number of components; <span><math><mi>γ</mi><mo>=</mo><mn>1</mn></math></span> corresponds to standard Boltzmann-Gibbs (BG) statistical mechanics. For this <span><math><mi>W</mi><mo>(</mo><mi>N</mi><mo>)</mo></math></span> asymptotic behavior, we make use of the group-theoretic entropic functional <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>γ</mi></mrow></msub><mo>=</mo><mi>k</mi><msup><mrow><mo>[</mo><mfrac><mrow><mi>ln</mi><mo></mo><msubsup><mrow><mi>Σ</mi></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>W</mi></mrow></msubsup><msubsup><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow><mrow><mi>α</mi></mrow></msubsup></mrow><mrow><mn>1</mn><mo>−</mo><mi>α</mi></mrow></mfrac><mo>]</mo></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>γ</mi></mrow></mfrac></mrow></msup><mspace></mspace><mo>(</mo><mi>α</mi><mo>∈</mo><mi>R</mi><mo>;</mo><mspace></mspace><msub><mrow><mi>S</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>B</mi><mi>G</mi></mrow></msub><mo>≡</mo><mo>−</mo><mi>k</mi><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>W</mi></mrow></msubsup><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub><mi>ln</mi><mo></mo><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></math></span>, first derived by P. Tempesta in Chaos <strong>30</strong>,123119, (2020). This functional is <em>extensive</em> (as required by thermodynamics) and <em>composable</em>, <span><math><mo>∀</mo><mo>(</mo><mi>α</mi><mo>,</mo><mi>γ</mi><mo>)</mo></math></span>. Being extensive means that in the micro-canonical, or uniform, ensemble where all micro-state occur with the same probability, the entropy becomes proportional to <em>N</em> asymptotically: <span><math><mi>S</mi><mo>(</mo><mi>N</mi><mo>)</mo><mo>∝</mo><mi>N</mi></math></span> for <span><math><mi>N</mi><mo>→</mo><mo>∞</mo></math></span>. An entropy is composable if it satisfies that the entropy <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>A</mi></mrow></msub></math></span> of a system <span><math><mi>A</mi><mo>=</mo><mi>B</mi><mo>×</mo><mi>C</mi></math></span> consisting of two statistically independent parts <em>B</em> and <em>C</em> is given in a consistent way as <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>=</mo><mi>Φ</mi><mo>(</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>B</mi></mrow></msub><mo>,</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>C</mi></mrow></msub><mo>)</mo></math></span> where the composition function <span><math><mi>Φ</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span> is obtained from group-theory.</div><div>We further show that <span><math><mo>(</mo><mi>α</mi><mo>,</mo><mi>γ</mi><mo>)</mo><mo>=</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>/</mo><mn>3</mn><mo>)</mo></math></span> satisfactorily agrees with cosmological data measuring neutrinos, Big Bang nucleosynthesis and the relic abundance of cold dark matter particles, as well as dynamical and geometrical cosmological data sets.</div></div>","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"861 ","pages":"Article 139238"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0370269324007962","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In recent decades, an intensive worldwide research activity is focusing both black holes and cosmos (e.g. the dark-energy phenomenon) on the basis of entropic approaches. The Boltzmann-Gibbs-based Bekenstein-Hawking entropy (A≡ area; Planck length) systematically plays a crucial theoretical role although it has a serious drawback, namely that it violates the thermodynamic extensivity of spatially-three-dimensional systems. Still, its intriguing area dependence points out the relevance of considering the form , W and N respectively being the total number of microscopic possibilities and the number of components; corresponds to standard Boltzmann-Gibbs (BG) statistical mechanics. For this asymptotic behavior, we make use of the group-theoretic entropic functional , first derived by P. Tempesta in Chaos 30,123119, (2020). This functional is extensive (as required by thermodynamics) and composable, . Being extensive means that in the micro-canonical, or uniform, ensemble where all micro-state occur with the same probability, the entropy becomes proportional to N asymptotically: for . An entropy is composable if it satisfies that the entropy of a system consisting of two statistically independent parts B and C is given in a consistent way as where the composition function is obtained from group-theory.
We further show that satisfactorily agrees with cosmological data measuring neutrinos, Big Bang nucleosynthesis and the relic abundance of cold dark matter particles, as well as dynamical and geometrical cosmological data sets.
期刊介绍:
Physics Letters B ensures the rapid publication of important new results in particle physics, nuclear physics and cosmology. Specialized editors are responsible for contributions in experimental nuclear physics, theoretical nuclear physics, experimental high-energy physics, theoretical high-energy physics, and astrophysics.