Extensive composable entropy for the analysis of cosmological data

IF 4.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Physics Letters B Pub Date : 2025-02-01 DOI:10.1016/j.physletb.2024.139238
Constantino Tsallis , Henrik Jeldtoft Jensen
{"title":"Extensive composable entropy for the analysis of cosmological data","authors":"Constantino Tsallis ,&nbsp;Henrik Jeldtoft Jensen","doi":"10.1016/j.physletb.2024.139238","DOIUrl":null,"url":null,"abstract":"<div><div>In recent decades, an intensive worldwide research activity is focusing both black holes and cosmos (e.g. the dark-energy phenomenon) on the basis of entropic approaches. The Boltzmann-Gibbs-based Bekenstein-Hawking entropy <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>B</mi><mi>H</mi></mrow></msub><mo>∝</mo><mi>A</mi><mo>/</mo><msubsup><mrow><mi>l</mi></mrow><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> (<em>A</em>≡ area; <span><math><msub><mrow><mi>l</mi></mrow><mrow><mi>P</mi></mrow></msub><mo>≡</mo></math></span> Planck length) systematically plays a crucial theoretical role although it has a serious drawback, namely that it violates the thermodynamic extensivity of spatially-three-dimensional systems. Still, its intriguing area dependence points out the relevance of considering the form <span><math><mi>W</mi><mo>(</mo><mi>N</mi><mo>)</mo><mo>∼</mo><msup><mrow><mi>μ</mi></mrow><mrow><msup><mrow><mi>N</mi></mrow><mrow><mi>γ</mi></mrow></msup></mrow></msup><mspace></mspace><mspace></mspace><mo>(</mo><mi>μ</mi><mo>&gt;</mo><mn>1</mn><mo>;</mo><mi>γ</mi><mo>&gt;</mo><mn>0</mn><mo>)</mo></math></span>, <em>W</em> and <em>N</em> respectively being the total number of microscopic possibilities and the number of components; <span><math><mi>γ</mi><mo>=</mo><mn>1</mn></math></span> corresponds to standard Boltzmann-Gibbs (BG) statistical mechanics. For this <span><math><mi>W</mi><mo>(</mo><mi>N</mi><mo>)</mo></math></span> asymptotic behavior, we make use of the group-theoretic entropic functional <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>γ</mi></mrow></msub><mo>=</mo><mi>k</mi><msup><mrow><mo>[</mo><mfrac><mrow><mi>ln</mi><mo>⁡</mo><msubsup><mrow><mi>Σ</mi></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>W</mi></mrow></msubsup><msubsup><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow><mrow><mi>α</mi></mrow></msubsup></mrow><mrow><mn>1</mn><mo>−</mo><mi>α</mi></mrow></mfrac><mo>]</mo></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>γ</mi></mrow></mfrac></mrow></msup><mspace></mspace><mo>(</mo><mi>α</mi><mo>∈</mo><mi>R</mi><mo>;</mo><mspace></mspace><msub><mrow><mi>S</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>B</mi><mi>G</mi></mrow></msub><mo>≡</mo><mo>−</mo><mi>k</mi><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>W</mi></mrow></msubsup><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub><mi>ln</mi><mo>⁡</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></math></span>, first derived by P. Tempesta in Chaos <strong>30</strong>,123119, (2020). This functional is <em>extensive</em> (as required by thermodynamics) and <em>composable</em>, <span><math><mo>∀</mo><mo>(</mo><mi>α</mi><mo>,</mo><mi>γ</mi><mo>)</mo></math></span>. Being extensive means that in the micro-canonical, or uniform, ensemble where all micro-state occur with the same probability, the entropy becomes proportional to <em>N</em> asymptotically: <span><math><mi>S</mi><mo>(</mo><mi>N</mi><mo>)</mo><mo>∝</mo><mi>N</mi></math></span> for <span><math><mi>N</mi><mo>→</mo><mo>∞</mo></math></span>. An entropy is composable if it satisfies that the entropy <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>A</mi></mrow></msub></math></span> of a system <span><math><mi>A</mi><mo>=</mo><mi>B</mi><mo>×</mo><mi>C</mi></math></span> consisting of two statistically independent parts <em>B</em> and <em>C</em> is given in a consistent way as <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>=</mo><mi>Φ</mi><mo>(</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>B</mi></mrow></msub><mo>,</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>C</mi></mrow></msub><mo>)</mo></math></span> where the composition function <span><math><mi>Φ</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span> is obtained from group-theory.</div><div>We further show that <span><math><mo>(</mo><mi>α</mi><mo>,</mo><mi>γ</mi><mo>)</mo><mo>=</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>/</mo><mn>3</mn><mo>)</mo></math></span> satisfactorily agrees with cosmological data measuring neutrinos, Big Bang nucleosynthesis and the relic abundance of cold dark matter particles, as well as dynamical and geometrical cosmological data sets.</div></div>","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"861 ","pages":"Article 139238"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0370269324007962","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

In recent decades, an intensive worldwide research activity is focusing both black holes and cosmos (e.g. the dark-energy phenomenon) on the basis of entropic approaches. The Boltzmann-Gibbs-based Bekenstein-Hawking entropy SBHA/lP2 (A≡ area; lP Planck length) systematically plays a crucial theoretical role although it has a serious drawback, namely that it violates the thermodynamic extensivity of spatially-three-dimensional systems. Still, its intriguing area dependence points out the relevance of considering the form W(N)μNγ(μ>1;γ>0), W and N respectively being the total number of microscopic possibilities and the number of components; γ=1 corresponds to standard Boltzmann-Gibbs (BG) statistical mechanics. For this W(N) asymptotic behavior, we make use of the group-theoretic entropic functional Sα,γ=k[lnΣi=1Wpiα1α]1γ(αR;S1,1=SBGki=1Wpilnpi), first derived by P. Tempesta in Chaos 30,123119, (2020). This functional is extensive (as required by thermodynamics) and composable, (α,γ). Being extensive means that in the micro-canonical, or uniform, ensemble where all micro-state occur with the same probability, the entropy becomes proportional to N asymptotically: S(N)N for N. An entropy is composable if it satisfies that the entropy SA of a system A=B×C consisting of two statistically independent parts B and C is given in a consistent way as SA=Φ(SB,SC) where the composition function Φ(x,y) is obtained from group-theory.
We further show that (α,γ)=(1,2/3) satisfactorily agrees with cosmological data measuring neutrinos, Big Bang nucleosynthesis and the relic abundance of cold dark matter particles, as well as dynamical and geometrical cosmological data sets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于宇宙学数据分析的广泛可组合熵
近几十年来,世界范围内对黑洞和宇宙(如暗能量现象)的研究都集中在熵方法的基础上。基于玻尔兹曼-吉布斯的贝肯斯坦-霍金熵SBH∝A/lP2 (A≡面积;lP≡普朗克长度)系统地起着至关重要的理论作用,尽管它有一个严重的缺点,即它违反了空间三维系统的热力学广泛性。尽管如此,其有趣的区域依赖性指出了考虑W(N) ~ μNγ(μ>1;γ>0)形式的相关性,W和N分别是微观可能性的总数和组分的数量;γ=1对应于标准玻尔兹曼-吉布斯(BG)统计力学。对于这种W(N)渐近行为,我们使用了群论熵泛函Sα,γ=k[ln (Σi) =1Wpiα1 - α]1γ(α∈R;S1,1=SBG≡- k∑i=1Wpiln (pi)),该泛函首先由P. Tempesta在Chaos 30,123119,(2020)中导出。这个泛函是广泛的(如热力学所要求的)和可组合的,∀(α,γ)。广泛意味着在微正则系综中,所有微观状态都以相同的概率发生,熵与N渐近成正比:S(N)∝N→∞。如果由统计上独立的两个部分B和C组成的系统a =B×C的熵SA一致地表示为SA=Φ(SB,SC),其中组合函数Φ(x,y)由群论得到,则该熵是可组合的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physics Letters B
Physics Letters B 物理-物理:综合
CiteScore
9.10
自引率
6.80%
发文量
647
审稿时长
3 months
期刊介绍: Physics Letters B ensures the rapid publication of important new results in particle physics, nuclear physics and cosmology. Specialized editors are responsible for contributions in experimental nuclear physics, theoretical nuclear physics, experimental high-energy physics, theoretical high-energy physics, and astrophysics.
期刊最新文献
N=2 superconformal gravitino in harmonic superspace Axion effects on gamma-ray spectral irregularities. II: Implications of EBL absorption Baryon number violating hydrogen decay Spontaneous CP violation, sterile neutrino dark matter and leptogenesis Unveiling the Secrets of Vortex Neutron Decay
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1