Quasi-phase-matched up- and down-conversion in periodically poled layered semiconductors

IF 32.9 1区 物理与天体物理 Q1 OPTICS Nature Photonics Pub Date : 2025-01-13 DOI:10.1038/s41566-024-01602-z
Chiara Trovatello, Carino Ferrante, Birui Yang, Josip Bajo, Benjamin Braun, Zhi Hao Peng, Xinyi Xu, Philipp K. Jenke, Andrew Ye, Milan Delor, D. N. Basov, Jiwoong Park, Philip Walther, Cory R. Dean, Lee A. Rozema, Andrea Marini, Giulio Cerullo, P. James Schuck
{"title":"Quasi-phase-matched up- and down-conversion in periodically poled layered semiconductors","authors":"Chiara Trovatello, Carino Ferrante, Birui Yang, Josip Bajo, Benjamin Braun, Zhi Hao Peng, Xinyi Xu, Philipp K. Jenke, Andrew Ye, Milan Delor, D. N. Basov, Jiwoong Park, Philip Walther, Cory R. Dean, Lee A. Rozema, Andrea Marini, Giulio Cerullo, P. James Schuck","doi":"10.1038/s41566-024-01602-z","DOIUrl":null,"url":null,"abstract":"Nonlinear optics lies at the heart of classical and quantum light generation. The invention of periodic poling revolutionized nonlinear optics and its commercial applications by enabling robust quasi-phase-matching in crystals such as lithium niobate. However, reaching useful frequency conversion efficiencies requires macroscopic dimensions, limiting further technology development and integration. Here we realize a periodically poled van der Waals semiconductor (3R-MoS2). Owing to its large nonlinearity, we achieve a macroscopic frequency conversion efficiency of 0.03% at the relevant telecom wavelength over a microscopic thickness of 3.4 μm (that is, 3 poling periods), 10–100× thinner than current systems with similar performances. Due to intrinsic cavity effects, the thickness-dependent quasi-phase-matched second harmonic signal surpasses the usual quadratic enhancement by 50%. Further, we report the broadband generation of photon pairs at telecom wavelength via quasi-phase-matched spontaneous parametric down-conversion, showing a maximum coincidence-to-accidental ratio of 638 ± 75. This work opens the new and unexplored field of phase-matched nonlinear optics with microscopic van der Waals crystals, unlocking applications that require simple, ultra-compact technologies such as on-chip entangled photon-pair sources for integrated quantum circuitry and sensing. Researchers created a periodically poled van der Waals semiconductor (3R-MoS2) and achieved a macroscopic frequency conversion efficiency of 0.03% over a thickness of 3.4 μm. The quasi-phase-matched second harmonic signal surpasses the usual quadratic enhancement by 50% and broadband generation of photon pairs at telecom wavelength is demonstrated with a coincidence-to-accidental ratio of 638 ± 75.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"19 3","pages":"291-299"},"PeriodicalIF":32.9000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41566-024-01602-z","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Nonlinear optics lies at the heart of classical and quantum light generation. The invention of periodic poling revolutionized nonlinear optics and its commercial applications by enabling robust quasi-phase-matching in crystals such as lithium niobate. However, reaching useful frequency conversion efficiencies requires macroscopic dimensions, limiting further technology development and integration. Here we realize a periodically poled van der Waals semiconductor (3R-MoS2). Owing to its large nonlinearity, we achieve a macroscopic frequency conversion efficiency of 0.03% at the relevant telecom wavelength over a microscopic thickness of 3.4 μm (that is, 3 poling periods), 10–100× thinner than current systems with similar performances. Due to intrinsic cavity effects, the thickness-dependent quasi-phase-matched second harmonic signal surpasses the usual quadratic enhancement by 50%. Further, we report the broadband generation of photon pairs at telecom wavelength via quasi-phase-matched spontaneous parametric down-conversion, showing a maximum coincidence-to-accidental ratio of 638 ± 75. This work opens the new and unexplored field of phase-matched nonlinear optics with microscopic van der Waals crystals, unlocking applications that require simple, ultra-compact technologies such as on-chip entangled photon-pair sources for integrated quantum circuitry and sensing. Researchers created a periodically poled van der Waals semiconductor (3R-MoS2) and achieved a macroscopic frequency conversion efficiency of 0.03% over a thickness of 3.4 μm. The quasi-phase-matched second harmonic signal surpasses the usual quadratic enhancement by 50% and broadband generation of photon pairs at telecom wavelength is demonstrated with a coincidence-to-accidental ratio of 638 ± 75.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
周期性极化层状半导体的准相位匹配上下转换
非线性光学是经典光和量子光产生的核心。周期性极化的发明革新了非线性光学及其商业应用,实现了铌酸锂等晶体的鲁棒准相位匹配。然而,达到有用的变频效率需要宏观尺度,限制了进一步的技术发展和集成。在这里我们实现了一个周期性极化的范德华半导体(3R-MoS2)。由于其很大的非线性,我们在3.4 μm(即3个极化周期)的微观厚度上实现了相关电信波长的宏观变频效率为0.03%,比具有相似性能的现有系统薄10 - 100倍。由于固有腔效应,厚度相关的准相位匹配二次谐波信号比通常的二次增强高50%。此外,我们报告了通过准相位匹配自发参数下转换在电信波长产生宽带光子对,显示出最大巧合比为638±75。这项工作打开了微观范德华晶体相位匹配非线性光学的新领域,解锁了需要简单,超紧凑技术的应用,例如集成量子电路和传感的片上纠缠光子对源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Photonics
Nature Photonics 物理-光学
CiteScore
54.20
自引率
1.70%
发文量
158
审稿时长
12 months
期刊介绍: Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection. The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays. In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.
期刊最新文献
Photostable donor–acceptor interface for minimizing energy loss in inverted perovskite solar cells A high-speed heterogeneous lithium tantalate silicon photonics platform On-chip topological leaky-wave antenna for full-space terahertz wireless connectivity Encoding and manipulating ultrafast coherent valleytronic information with lightwaves Stable deep-blue organic light-emitting diodes based on sensitized fluorescence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1