Yihang Wang, Nan Cong, Yu Zhong, Yongshuo Fu, Nan Wang, Lijian Ouyang, Weiwei Yao
{"title":"Impacts of cascade dam construction on riparian vegetation in an alpine region","authors":"Yihang Wang, Nan Cong, Yu Zhong, Yongshuo Fu, Nan Wang, Lijian Ouyang, Weiwei Yao","doi":"10.1016/j.jhydrol.2025.132665","DOIUrl":null,"url":null,"abstract":"The Jinsha River (JSR) serves as a crucial ecological corridor in the upper Yangtze River Basin, hosting one of the world’s largest cascade hydropower dam (CHD) developments. However, systematic quantitative research on riparian vegetation (RV) ecosystems along JSR response to CHD construction and climate change is lacking. Using multi-source datasets from 2000 to 2022, we quantified the effects of CHD on key climatic factors (temperature, precipitation, vapor pressure deficit, and soil moisture) and analyzed their contributions to RV dynamics. Results indicate that RV in the JSR exhibited a more pronounced “greening” trend after CHD construction (The NDVI trend is rising from 0.0021 yr<ce:sup loc=\"post\">−1</ce:sup> to 0.0096 yr<ce:sup loc=\"post\">−1</ce:sup>, by more than four times). CHD operations led to decreased temperature and vapor pressure deficit, while increasing precipitation and soil moisture, significantly improving the growth conditions for RV. Structural equation modeling further revealed that CHD not only directly promoted RV growth but also exerted significant positive indirect effects by regulating the regional microclimate. Importantly, the cumulative effects of CHD resulted in a long-term positive impact on RV growth that outweighed the initial short-term negative impacts during construction. This study underscores the importance of integrating hydropower development into long-term riparian ecosystem monitoring and management, providing valuable insights for sustainable river basin management amid global climate change.","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":"21 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.jhydrol.2025.132665","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The Jinsha River (JSR) serves as a crucial ecological corridor in the upper Yangtze River Basin, hosting one of the world’s largest cascade hydropower dam (CHD) developments. However, systematic quantitative research on riparian vegetation (RV) ecosystems along JSR response to CHD construction and climate change is lacking. Using multi-source datasets from 2000 to 2022, we quantified the effects of CHD on key climatic factors (temperature, precipitation, vapor pressure deficit, and soil moisture) and analyzed their contributions to RV dynamics. Results indicate that RV in the JSR exhibited a more pronounced “greening” trend after CHD construction (The NDVI trend is rising from 0.0021 yr−1 to 0.0096 yr−1, by more than four times). CHD operations led to decreased temperature and vapor pressure deficit, while increasing precipitation and soil moisture, significantly improving the growth conditions for RV. Structural equation modeling further revealed that CHD not only directly promoted RV growth but also exerted significant positive indirect effects by regulating the regional microclimate. Importantly, the cumulative effects of CHD resulted in a long-term positive impact on RV growth that outweighed the initial short-term negative impacts during construction. This study underscores the importance of integrating hydropower development into long-term riparian ecosystem monitoring and management, providing valuable insights for sustainable river basin management amid global climate change.
期刊介绍:
The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.