Filip Stanić, Nenad Jaćimović, Željko Vasilić, Anja Ranđelović
{"title":"A novel semi-numerical infiltration model combining conceptual and physically based approaches","authors":"Filip Stanić, Nenad Jaćimović, Željko Vasilić, Anja Ranđelović","doi":"10.1016/j.jhydrol.2025.132664","DOIUrl":null,"url":null,"abstract":"Hydrological models use methods of varying complexity to compute vertical infiltration described by Richards equation, which lacks an analytical solution, and is often solved using time-consuming, iterative numerical models. For continuous hydrological simulations these models are often replaced by simpler, yet less accurate models for greater computational efficiency. Seeking a compromise between accuracy and efficiency, a new semi-numerical infiltration model, combining conceptual and physically based approaches is developed and presented in this paper. The model assumes dividing the computational domain into computational cells that retain a differential form of the mass balance equation. After linearizing the input and output flux in each cell, an analytical solution of the mass balance equation is obtained. The solution is similar to a “linear reservoir” function, and it is valid only for a discrete time interval. By combining such solutions for each computational cell, a tridiagonal system of linear equations is obtained and solved directly without iterations. This non-iterative approach to solving Richards equation is reminiscent of the Ross model, with a key difference in the “linear reservoir” exponential term, contributing to the accuracy and stability of the presented semi-numerical model. Comparison between this model and the Ross model on four numerical examples shows that, except in strictly unsaturated conditions when the soil is exposed to low-intensity precipitation, the semi-numerical model achieves more stable results with considerably smaller number of computational steps and reduced mass balance errors. This indicates a clear potential for effective application of the proposed approach in distributed hydrological models.","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":"89 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.jhydrol.2025.132664","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrological models use methods of varying complexity to compute vertical infiltration described by Richards equation, which lacks an analytical solution, and is often solved using time-consuming, iterative numerical models. For continuous hydrological simulations these models are often replaced by simpler, yet less accurate models for greater computational efficiency. Seeking a compromise between accuracy and efficiency, a new semi-numerical infiltration model, combining conceptual and physically based approaches is developed and presented in this paper. The model assumes dividing the computational domain into computational cells that retain a differential form of the mass balance equation. After linearizing the input and output flux in each cell, an analytical solution of the mass balance equation is obtained. The solution is similar to a “linear reservoir” function, and it is valid only for a discrete time interval. By combining such solutions for each computational cell, a tridiagonal system of linear equations is obtained and solved directly without iterations. This non-iterative approach to solving Richards equation is reminiscent of the Ross model, with a key difference in the “linear reservoir” exponential term, contributing to the accuracy and stability of the presented semi-numerical model. Comparison between this model and the Ross model on four numerical examples shows that, except in strictly unsaturated conditions when the soil is exposed to low-intensity precipitation, the semi-numerical model achieves more stable results with considerably smaller number of computational steps and reduced mass balance errors. This indicates a clear potential for effective application of the proposed approach in distributed hydrological models.
期刊介绍:
The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.