Lora Stojanovic, Rachel Abbotts, Kaushelendra Tripathi, Collin M. Coon, Saranya Rajendran, Elnaz Abbasi Farid, Galen Hostetter, Joseph W. Guarnieri, Douglas C. Wallace, Sheng Liu, Jun Wan, Gennaro Calendo, Rebecca Marker, Zahra Gohari, Mohammed M.A. Inayatullah, Vijay K. Tiwari, Tanjina Kader, Sandro Santagata, Ronny Drapkin, Stefan Kommoss, Jacobus Pfisterer, Gottfried E. Konecny, Ryan Coopergard, Jean-Pierre J. Issa, Boris J.N. Winterhoff, Michael J. Topper, George E. Sandusky, Kathy D. Miller, Stephen B. Baylin, Kenneth P. Nephew, Feyruz V. Rassool
{"title":"ZNFX1 functions as a master regulator of epigenetically induced pathogen mimicry and inflammasome signaling in cancer","authors":"Lora Stojanovic, Rachel Abbotts, Kaushelendra Tripathi, Collin M. Coon, Saranya Rajendran, Elnaz Abbasi Farid, Galen Hostetter, Joseph W. Guarnieri, Douglas C. Wallace, Sheng Liu, Jun Wan, Gennaro Calendo, Rebecca Marker, Zahra Gohari, Mohammed M.A. Inayatullah, Vijay K. Tiwari, Tanjina Kader, Sandro Santagata, Ronny Drapkin, Stefan Kommoss, Jacobus Pfisterer, Gottfried E. Konecny, Ryan Coopergard, Jean-Pierre J. Issa, Boris J.N. Winterhoff, Michael J. Topper, George E. Sandusky, Kathy D. Miller, Stephen B. Baylin, Kenneth P. Nephew, Feyruz V. Rassool","doi":"10.1158/0008-5472.can-24-1286","DOIUrl":null,"url":null,"abstract":"DNA methyltransferase and poly (ADP-ribose) polymerase inhibitors (DNMTis, PARPis) induce a stimulator of interferon genes (STING)-dependent pathogen mimicry response (PMR) in ovarian and other cancers. Here, we showed that combining DNMTis and PARPis upregulates expression of the nucleic-acid sensor NFX1-type zinc finger-containing 1 protein (ZNFX1). ZNFX1 mediated induction of PMR in mitochondria, serving as a gateway for STING-dependent interferon/inflammasome signaling. Loss of ZNFX1 in ovarian cancer cells promoted proliferation and spheroid formation in vitro and tumor growth in vivo. In patient ovarian cancer databases, expression of ZNFX1 was elevated in advanced stage disease, and ZNFX1 expression alone significantly correlated with an increase in overall survival in a phase 3 trial for therapy-resistant ovarian cancer patients receiving bevacizumab in combination with chemotherapy. RNA-sequencing revealed an association between inflammasome signaling through ZNFX1 and abnormal vasculogenesis. Together, this study identified that ZNFX1 as a tumor suppressor that controls PMR signaling through mitochondria and may serve as a biomarker to facilitate personalized therapy in ovarian cancer patients.","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":"128 1","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/0008-5472.can-24-1286","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
DNA methyltransferase and poly (ADP-ribose) polymerase inhibitors (DNMTis, PARPis) induce a stimulator of interferon genes (STING)-dependent pathogen mimicry response (PMR) in ovarian and other cancers. Here, we showed that combining DNMTis and PARPis upregulates expression of the nucleic-acid sensor NFX1-type zinc finger-containing 1 protein (ZNFX1). ZNFX1 mediated induction of PMR in mitochondria, serving as a gateway for STING-dependent interferon/inflammasome signaling. Loss of ZNFX1 in ovarian cancer cells promoted proliferation and spheroid formation in vitro and tumor growth in vivo. In patient ovarian cancer databases, expression of ZNFX1 was elevated in advanced stage disease, and ZNFX1 expression alone significantly correlated with an increase in overall survival in a phase 3 trial for therapy-resistant ovarian cancer patients receiving bevacizumab in combination with chemotherapy. RNA-sequencing revealed an association between inflammasome signaling through ZNFX1 and abnormal vasculogenesis. Together, this study identified that ZNFX1 as a tumor suppressor that controls PMR signaling through mitochondria and may serve as a biomarker to facilitate personalized therapy in ovarian cancer patients.
期刊介绍:
Cancer Research, published by the American Association for Cancer Research (AACR), is a journal that focuses on impactful original studies, reviews, and opinion pieces relevant to the broad cancer research community. Manuscripts that present conceptual or technological advances leading to insights into cancer biology are particularly sought after. The journal also places emphasis on convergence science, which involves bridging multiple distinct areas of cancer research.
With primary subsections including Cancer Biology, Cancer Immunology, Cancer Metabolism and Molecular Mechanisms, Translational Cancer Biology, Cancer Landscapes, and Convergence Science, Cancer Research has a comprehensive scope. It is published twice a month and has one volume per year, with a print ISSN of 0008-5472 and an online ISSN of 1538-7445.
Cancer Research is abstracted and/or indexed in various databases and platforms, including BIOSIS Previews (R) Database, MEDLINE, Current Contents/Life Sciences, Current Contents/Clinical Medicine, Science Citation Index, Scopus, and Web of Science.