Yidong Hou, Xiu Yang, Shu Hu, Qianqi Lin, Jie Zhou, Jialong Peng, Chenyang Guo, Shanshan Huang, Liangke Ren, Ana Sánchez-Iglesias, Rohit Chikkaraddy, Jeremy J. Baumberg
{"title":"Extreme Optical Chirality from Plasmonic Nanocrystals on a Mirror","authors":"Yidong Hou, Xiu Yang, Shu Hu, Qianqi Lin, Jie Zhou, Jialong Peng, Chenyang Guo, Shanshan Huang, Liangke Ren, Ana Sánchez-Iglesias, Rohit Chikkaraddy, Jeremy J. Baumberg","doi":"10.1021/acs.nanolett.4c05668","DOIUrl":null,"url":null,"abstract":"Metal nanocrystals synthesized in achiral environments usually exhibit no chiroptical effects. However, by placing nominally achiral nanocrystals 1.3 nm above gold films, we find giant chiroptical effects, reaching anisotropy factors as high as <i>g</i> ≈ 0.9 for single nanodecahedra placed on a gold mirror (NDoM). We show that this is a general phenomenon depending on the geometry, demonstrating it for various nanocrystal shapes. Theoretical modeling reveals that tiny chiral imperfections are strongly enhanced by edge modes in the gap, which coherently superpose with in-plane dipoles to generate strong chiroptical signatures. This phenomenon results in photonic spin Hall effects and distinctive chiral scattering patterns.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"205 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c05668","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Metal nanocrystals synthesized in achiral environments usually exhibit no chiroptical effects. However, by placing nominally achiral nanocrystals 1.3 nm above gold films, we find giant chiroptical effects, reaching anisotropy factors as high as g ≈ 0.9 for single nanodecahedra placed on a gold mirror (NDoM). We show that this is a general phenomenon depending on the geometry, demonstrating it for various nanocrystal shapes. Theoretical modeling reveals that tiny chiral imperfections are strongly enhanced by edge modes in the gap, which coherently superpose with in-plane dipoles to generate strong chiroptical signatures. This phenomenon results in photonic spin Hall effects and distinctive chiral scattering patterns.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.