Fundamental microscopic properties as predictors of large-scale quantities of interest: Validation through grain boundary energy trends

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Acta Materialia Pub Date : 2025-01-13 DOI:10.1016/j.actamat.2025.120722
Benjamin A. Jasperson , Ilia Nikiforov , Amit Samanta , Brandon Runnels , Harley T. Johnson , Ellad B. Tadmor
{"title":"Fundamental microscopic properties as predictors of large-scale quantities of interest: Validation through grain boundary energy trends","authors":"Benjamin A. Jasperson ,&nbsp;Ilia Nikiforov ,&nbsp;Amit Samanta ,&nbsp;Brandon Runnels ,&nbsp;Harley T. Johnson ,&nbsp;Ellad B. Tadmor","doi":"10.1016/j.actamat.2025.120722","DOIUrl":null,"url":null,"abstract":"<div><div>Correlations between fundamental microscopic properties computable from first principles, which we term <em>canonical properties</em>, and complex large-scale quantities of interest (QoIs) provide an avenue to predictive materials discovery. We propose that such correlations can be efficiently discovered through simulations utilizing approximate interatomic potentials (IPs), which serve as an ensemble of “synthetic materials”. As a proof of principle we build a regression model relating canonical properties to the symmetric tilt grain boundary (GB) energy curves in face-centered cubic crystals, characterized by the scaling factor in the universal lattice matching model of Runnels et al. (2016), which we take to be our QoI. Our analysis recovers known correlations of GB energy to other properties and discovers new ones. We also demonstrate, using available density functional theory (DFT) GB energy data, that the regression model constructed from IP data is consistent with DFT results, confirming the assumption that the IPs and DFT belong to same statistical pool and thereby validating the approach. Regression models constructed in this fashion can be used to predict large-scale QoIs based on first-principles data and provide a general method for training IPs for QoIs beyond the scope of first-principles calculations.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"286 ","pages":"Article 120722"},"PeriodicalIF":8.3000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645425000151","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Correlations between fundamental microscopic properties computable from first principles, which we term canonical properties, and complex large-scale quantities of interest (QoIs) provide an avenue to predictive materials discovery. We propose that such correlations can be efficiently discovered through simulations utilizing approximate interatomic potentials (IPs), which serve as an ensemble of “synthetic materials”. As a proof of principle we build a regression model relating canonical properties to the symmetric tilt grain boundary (GB) energy curves in face-centered cubic crystals, characterized by the scaling factor in the universal lattice matching model of Runnels et al. (2016), which we take to be our QoI. Our analysis recovers known correlations of GB energy to other properties and discovers new ones. We also demonstrate, using available density functional theory (DFT) GB energy data, that the regression model constructed from IP data is consistent with DFT results, confirming the assumption that the IPs and DFT belong to same statistical pool and thereby validating the approach. Regression models constructed in this fashion can be used to predict large-scale QoIs based on first-principles data and provide a general method for training IPs for QoIs beyond the scope of first-principles calculations.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基本微观性质作为大尺度量的预测:通过晶界能量趋势的验证
从第一原理可计算的基本微观性质(我们称之为规范性质)与复杂的大尺度感兴趣量(qoi)之间的相关性为预测材料的发现提供了一条途径。我们提出这种相关性可以通过利用近似原子间势(IPs)的模拟有效地发现,它作为“合成材料”的集合。作为原理证明,我们建立了一个回归模型,将正则性质与面心立方晶体中的对称倾斜晶界(GB)能量曲线联系起来,以Runnels等人(2016)的通用晶格匹配模型中的比例因子为特征,我们将其作为我们的qi。我们的分析恢复了已知的GB能量与其他性质的相关性,并发现了新的相关性。我们还利用现有的密度泛函理论(DFT) GB能量数据证明,由IP数据构建的回归模型与DFT结果一致,证实了IP和DFT属于同一统计池的假设,从而验证了该方法。以这种方式构建的回归模型可用于基于第一性原理数据的大规模qos预测,并为第一性原理计算范围之外的qos训练ip提供了一种通用方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
期刊最新文献
Fitting-free mechanical response prediction in dual-phase steels by crystal plasticity theory guided deep learning Thermodynamics-Guided Design of Sustainable Secondary Al-Si Alloys for Enhanced Fe-Impurity Tolerance and Optimized Mn Doping A composition-based predictive model for the transformation strain of NiTi shape memory alloys Examining composition-dependent radiation response in AlGaN alloys Mechanistic understanding of vacancy formation energies in FCC concentrated alloys from DFT calculations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1