Cathode Design Based on Nitrogen Redox and Linear Coordination of Cu Center for All-Solid-State Fluoride-Ion Batteries

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2025-01-13 DOI:10.1021/jacs.4c12391
Datong Zhang, Kentaro Yamamoto, Zulai Cao, Yanchang Wang, Zhuoyan Zhong, Hisao Kiuchi, Toshiki Watanabe, Toshiyuki Matsunaga, Koji Nakanishi, Hidenori Miki, Hideki Iba, Yoshihisa Harada, Koji Amezawa, Kazuhiko Maeda, Hiroshi Kageyama, Yoshiharu Uchimoto
{"title":"Cathode Design Based on Nitrogen Redox and Linear Coordination of Cu Center for All-Solid-State Fluoride-Ion Batteries","authors":"Datong Zhang, Kentaro Yamamoto, Zulai Cao, Yanchang Wang, Zhuoyan Zhong, Hisao Kiuchi, Toshiki Watanabe, Toshiyuki Matsunaga, Koji Nakanishi, Hidenori Miki, Hideki Iba, Yoshihisa Harada, Koji Amezawa, Kazuhiko Maeda, Hiroshi Kageyama, Yoshiharu Uchimoto","doi":"10.1021/jacs.4c12391","DOIUrl":null,"url":null,"abstract":"All-solid-state fluoride-ion batteries (FIBs) have attracted extensive attention as candidates for next-generation energy storage devices; however, promising cathodes with high energy density are still lacking. In this study, Cu<sub>3</sub>N is investigated as a cathode material for all-solid-state fluoride-ion batteries, which offers enough anionic vacancies around the 2-fold coordinated Cu center for F<sup>–</sup> intercalation, thereby enabling a multielectron-transferred fluorination process. The contribution of both cationic and anionic redox to charge compensation, in particular, the generation of molecular nitrogen species in highly charged states, has been proved by several synchrotron-radiation-based spectroscopic technologies. As a result, Cu<sub>3</sub>N exhibits a high reversible capacity of ∼550 mAh g<sup>–1</sup>, exceeding many conventional fluoride-ion cathodes. It is believed that the new charge compensation chemistry as well as the unique intercalation behaviors of novel mixed-anion Cu–N/F local structures could bring new insights into energy storage materials.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"26 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c12391","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

All-solid-state fluoride-ion batteries (FIBs) have attracted extensive attention as candidates for next-generation energy storage devices; however, promising cathodes with high energy density are still lacking. In this study, Cu3N is investigated as a cathode material for all-solid-state fluoride-ion batteries, which offers enough anionic vacancies around the 2-fold coordinated Cu center for F intercalation, thereby enabling a multielectron-transferred fluorination process. The contribution of both cationic and anionic redox to charge compensation, in particular, the generation of molecular nitrogen species in highly charged states, has been proved by several synchrotron-radiation-based spectroscopic technologies. As a result, Cu3N exhibits a high reversible capacity of ∼550 mAh g–1, exceeding many conventional fluoride-ion cathodes. It is believed that the new charge compensation chemistry as well as the unique intercalation behaviors of novel mixed-anion Cu–N/F local structures could bring new insights into energy storage materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Exploring the Vibrational Coherences in the Ultrafast Electronic Relaxation of Pyrimidine Nucleobases and Nucleosides New Molecular Photoswitch Based on the Conformational Transition of Phenothiazine Derivatives and Corresponding Triplet Emission Properties Interlocked 2D Covalent Organic Frameworks from Overcrowded Nodes Upcycling Poly(vinyl chloride) and Polystyrene Plastics Using Photothermal Conversion Cathode Design Based on Nitrogen Redox and Linear Coordination of Cu Center for All-Solid-State Fluoride-Ion Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1