Permeable, Stretchable, and Recyclable Cellulose Aerogel On-Skin Electronics for Dual-Modal Sensing and Personal Healthcare

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2025-01-12 DOI:10.1021/acsnano.4c13458
Shuai Liu, Wenwen Li, Xinyi Wang, Liang Lu, Yue Yao, Shuyu Lai, Yunqi Xu, Junjie Yang, Zhihao Hu, Xinglong Gong, Ken Cham-Fai Leung, Shouhu Xuan
{"title":"Permeable, Stretchable, and Recyclable Cellulose Aerogel On-Skin Electronics for Dual-Modal Sensing and Personal Healthcare","authors":"Shuai Liu, Wenwen Li, Xinyi Wang, Liang Lu, Yue Yao, Shuyu Lai, Yunqi Xu, Junjie Yang, Zhihao Hu, Xinglong Gong, Ken Cham-Fai Leung, Shouhu Xuan","doi":"10.1021/acsnano.4c13458","DOIUrl":null,"url":null,"abstract":"Flexible on-skin electronics present tremendous popularity in intelligent electronic skins (e-skins), healthcare monitoring, and human-machine interfaces. However, the reported e-skins can hardly provide high permeability, good stretchability, and large sensitivity and are limited in long-term stability and efficient recyclability when worn on the human body. Herein, inspired from the human skin, a permeable, stretchable, and recyclable cellulose aerogel-based electronic system is developed by sandwiching a screen-printed silver sensing layer between a biocompatible CNF/HPC/PVA (cellulose nanofiber/hydroxypropyl cellulose/poly(vinyl alcohol)) aerogel hypodermis layer and a permeable polyurethane layer as the epidermis layer. The cellulose aerogel displays a high tensile strength of 1.14 MPa and tensile strain of 43.5% while maintaining good permeability. The cellulose aerogel-based electronics embrace appealing sensing performances with high sensitivity (gauge factor ≈ 238), ultralow detection limit (0.1%), and fast response time (18 ms) under strain stimulus. Owing to the disconnection and reconnection of microcracks in the sensing layer, both strain/humidity sensing and thermal healthcare can be easily achieved. The permeable electronics can be further integrated into an electronic mask for patient-centered healthcare with a power supply system, switching control device, and wireless Bluetooth module. Moreover, the prepared electronic system enables long-term wearing on human skin without skin irritation, and all components of the electronics can be recaptured/reused in water. This material strategy highlights the potential of next-generation on-skin electronics with high permeability and good environmental friendliness.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"3 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c13458","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Flexible on-skin electronics present tremendous popularity in intelligent electronic skins (e-skins), healthcare monitoring, and human-machine interfaces. However, the reported e-skins can hardly provide high permeability, good stretchability, and large sensitivity and are limited in long-term stability and efficient recyclability when worn on the human body. Herein, inspired from the human skin, a permeable, stretchable, and recyclable cellulose aerogel-based electronic system is developed by sandwiching a screen-printed silver sensing layer between a biocompatible CNF/HPC/PVA (cellulose nanofiber/hydroxypropyl cellulose/poly(vinyl alcohol)) aerogel hypodermis layer and a permeable polyurethane layer as the epidermis layer. The cellulose aerogel displays a high tensile strength of 1.14 MPa and tensile strain of 43.5% while maintaining good permeability. The cellulose aerogel-based electronics embrace appealing sensing performances with high sensitivity (gauge factor ≈ 238), ultralow detection limit (0.1%), and fast response time (18 ms) under strain stimulus. Owing to the disconnection and reconnection of microcracks in the sensing layer, both strain/humidity sensing and thermal healthcare can be easily achieved. The permeable electronics can be further integrated into an electronic mask for patient-centered healthcare with a power supply system, switching control device, and wireless Bluetooth module. Moreover, the prepared electronic system enables long-term wearing on human skin without skin irritation, and all components of the electronics can be recaptured/reused in water. This material strategy highlights the potential of next-generation on-skin electronics with high permeability and good environmental friendliness.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可渗透的,可拉伸的,可回收的纤维素气凝胶对皮肤电子双峰感应和个人医疗保健
柔性皮肤上电子产品在智能电子皮肤(e-skin)、医疗监控和人机界面中非常受欢迎。然而,所报道的电子皮肤很难提供高渗透性,良好的拉伸性和大灵敏度,并且在人体穿戴时的长期稳定性和高效可回收性方面受到限制。在此,受人体皮肤的启发,通过将丝网印刷的银传感层夹在生物相容性CNF/HPC/PVA(纤维素纳米纤维/羟丙基纤维素/聚乙烯醇)气凝胶皮下层和渗透性聚氨酯层之间,开发了一种可渗透、可拉伸和可回收的基于纤维素气凝胶的电子系统。纤维素气凝胶在保持良好透气性的同时,抗拉强度达到1.14 MPa,拉伸应变达到43.5%。基于纤维素气凝胶的电子元件具有高灵敏度(测量因子≈238),超低检测限(0.1%)和应变刺激下快速响应时间(18 ms)的传感性能。由于传感层微裂纹的断开和重新连接,可以很容易地实现应变/湿度传感和热保健。可渗透电子设备可以进一步集成到以患者为中心的医疗保健电子口罩中,并带有电源系统、开关控制装置和无线蓝牙模块。此外,所制备的电子系统可以长期佩戴在人体皮肤上而不会刺激皮肤,并且电子设备的所有组件都可以在水中重新捕获/再利用。这种材料策略突出了具有高渗透性和良好环境友好性的下一代皮肤电子产品的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
Poly(vinyl alcohol) powder (PVA-1799)
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Anchoring Sn-Containing High-Entropy Alloy PtFeCoNiCuSn on SnO2 for Improving Acetone Detection Ability. A Modular Encapsulation System for Precision Delivery of Proteins, Nucleic Acids, and Small Molecules. Synergistic Antibacterial Remineralization: A Bioprocessing-Inspired Single-Step Nanoparticle-Induced Liquid Precursor Strategy for Functional Dentin Repair Near-Infrared Responsive Ionoelastomer Junction Enabling Switchable Ionic Logic Gate Morphogenesis and High-Throughput Nanomanufacturing of Synthetic Brochosomes Inspired by a Leafhopper
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1