{"title":"Earth Abundant Transition Metals Complexes in Light-emitting Electrochemical Cells: Successes, Challenges and Perspectives","authors":"Ginevra Giobbio, Rubén D. Costa, Sylvain Gaillard","doi":"10.1039/d4dt03210a","DOIUrl":null,"url":null,"abstract":"Light-emitting Electrochemical Cells (LECs) are an attractive technology in the field of Solid State Light Devices (SSLD) as their simple architectures allow the preparation of cost-effective lighting devices. Consequently, low-cost and sustainable emitters are highly desired. The transition metal complexes are attractive in this field as they proved to possess compatible optoelectronic properties. Nowadays, the best emitters are based on platinum and iridium class metals which is a limitation for industrial production. For this concern, researchers have turned their attention to Earth-abundant metal complexes. But, are we aware that the cost consideration for these emitters should not be blinded by the abundance of the metal? Herein,the photophysical properties of the most interesting Earth-abundant metal complexes and their performance in LECs are put into context with respect to their real cost based on their metal precursors, bringing some surprises.","PeriodicalId":71,"journal":{"name":"Dalton Transactions","volume":"122 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dalton Transactions","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4dt03210a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Light-emitting Electrochemical Cells (LECs) are an attractive technology in the field of Solid State Light Devices (SSLD) as their simple architectures allow the preparation of cost-effective lighting devices. Consequently, low-cost and sustainable emitters are highly desired. The transition metal complexes are attractive in this field as they proved to possess compatible optoelectronic properties. Nowadays, the best emitters are based on platinum and iridium class metals which is a limitation for industrial production. For this concern, researchers have turned their attention to Earth-abundant metal complexes. But, are we aware that the cost consideration for these emitters should not be blinded by the abundance of the metal? Herein,the photophysical properties of the most interesting Earth-abundant metal complexes and their performance in LECs are put into context with respect to their real cost based on their metal precursors, bringing some surprises.
期刊介绍:
Dalton Transactions is a journal for all areas of inorganic chemistry, which encompasses the organometallic, bioinorganic and materials chemistry of the elements, with applications including synthesis, catalysis, energy conversion/storage, electrical devices and medicine. Dalton Transactions welcomes high-quality, original submissions in all of these areas and more, where the advancement of knowledge in inorganic chemistry is significant.