Rapid microfluidic perfusion system enables controlling dynamics of intracellular pH regulated by Na+/H+ exchanger NHE1.

IF 6.1 2区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS Lab on a Chip Pub Date : 2025-01-13 DOI:10.1039/d4lc00884g
Quang D Tran, Yann Bouret, Xavier Noblin, Gisèle Jarretou, Laurent Counillon, Mallorie Poët, Céline Cohen
{"title":"Rapid microfluidic perfusion system enables controlling dynamics of intracellular pH regulated by Na<sup>+</sup>/H<sup>+</sup> exchanger NHE1.","authors":"Quang D Tran, Yann Bouret, Xavier Noblin, Gisèle Jarretou, Laurent Counillon, Mallorie Poët, Céline Cohen","doi":"10.1039/d4lc00884g","DOIUrl":null,"url":null,"abstract":"<p><p>pH regulation of eukaryotic cells is of crucial importance and influences different mechanisms including chemical kinetics, buffer effects, metabolic activity, membrane transport and cell shape parameters. In this study, we develop a microfluidic system to rapidly and precisely control a continuous flow of ionic chemical species to acutely challenge the intracellular pH regulation mechanisms and confront predictive models. We monitor the intracellular pH dynamics in real-time using pH-sensitive fluorescence imaging and establish a robust mathematical tool to translate the fluorescence signals to pH values. By varying flow rate across the cells and duration for the rinsing process, we manage to tweak the dynamics of intracellular pH from a smooth recovery to either an overshooting state, where the pH goes excitedly to a maximum value before decreasing to a plateau, or an undershooting state, where the pH is unable to recover to ∼7. We believe our findings will provide more insight into intracellular regulatory mechanisms and promote the possibility of exploring cellular behavior in the presence of strong gradients or fast changes in homogeneous conditions.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d4lc00884g","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

pH regulation of eukaryotic cells is of crucial importance and influences different mechanisms including chemical kinetics, buffer effects, metabolic activity, membrane transport and cell shape parameters. In this study, we develop a microfluidic system to rapidly and precisely control a continuous flow of ionic chemical species to acutely challenge the intracellular pH regulation mechanisms and confront predictive models. We monitor the intracellular pH dynamics in real-time using pH-sensitive fluorescence imaging and establish a robust mathematical tool to translate the fluorescence signals to pH values. By varying flow rate across the cells and duration for the rinsing process, we manage to tweak the dynamics of intracellular pH from a smooth recovery to either an overshooting state, where the pH goes excitedly to a maximum value before decreasing to a plateau, or an undershooting state, where the pH is unable to recover to ∼7. We believe our findings will provide more insight into intracellular regulatory mechanisms and promote the possibility of exploring cellular behavior in the presence of strong gradients or fast changes in homogeneous conditions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
快速微流控灌注系统能够控制由Na+/H+交换剂NHE1调节的细胞内pH的动力学。
真核细胞的 pH 值调节至关重要,它影响着不同的机制,包括化学动力学、缓冲作用、代谢活动、膜转运和细胞形状参数。在本研究中,我们开发了一种微流控系统,可快速、精确地控制离子化学物质的连续流动,从而对细胞内 pH 值调节机制和预测模型提出严峻挑战。我们利用对 pH 值敏感的荧光成像技术实时监测细胞内 pH 值的动态变化,并建立了一个强大的数学工具将荧光信号转化为 pH 值。通过改变流过细胞的流速和冲洗过程的持续时间,我们设法调整细胞内pH值的动态变化,使其从平稳恢复到过冲状态(pH值在下降到高原之前兴奋地达到最大值)或欠冲状态(pH值无法恢复到7~7)。我们相信,我们的发现将使人们对细胞内调控机制有更深入的了解,并为探索细胞在强梯度或快速变化的均质条件下的行为提供了可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Lab on a Chip
Lab on a Chip 工程技术-化学综合
CiteScore
11.10
自引率
8.20%
发文量
434
审稿时长
2.6 months
期刊介绍: Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.
期刊最新文献
Advancing cellular transfer printing: achieving bioadhesion-free deposition via vibration microstreaming. Design of a magnetically responsive artificial cilia array platform for microsphere transport. An intimal-lumen model in a microfluidic device: potential platform for atherosclerosis-related studies. Liquid metal electrodes enabled cascaded on-chip dielectrophoretic separation of large-size-range particles. A vascularized microfluidic model of the osteochondral unit for modeling inflammatory response and therapeutic screening.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1