Probing Biomolecular Interactions with Paramagnetic Nuclear Magnetic Resonance Spectroscopy.

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY ChemBioChem Pub Date : 2025-01-13 DOI:10.1002/cbic.202400903
Hannah Busch, Muhammad Yasir Ateeque, Florian Taube, Thomas Wiegand, Björn Corzilius, Georg Künze
{"title":"Probing Biomolecular Interactions with Paramagnetic Nuclear Magnetic Resonance Spectroscopy.","authors":"Hannah Busch, Muhammad Yasir Ateeque, Florian Taube, Thomas Wiegand, Björn Corzilius, Georg Künze","doi":"10.1002/cbic.202400903","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advances in computational methods like AlphaFold have transformed structural biology, enabling accurate modeling of protein complexes and driving applications in drug discovery and protein engineering. However, predicting the structure of systems involving weak, transient, or dynamic interactions, or of complexes with disordered regions, remains challenging. Nuclear Magnetic Resonance (NMR) spectroscopy offers atomic-level insights into biomolecular complexes, even in weakly interacting and dynamic systems. Paramagnetic NMR, in particular, provides long-range structural restraints, easily exceeding distances over 25 Å, making it ideal for studying large protein complexes. Advances in chemical tools for introducing paramagnetic tags into proteins, combined with progress in electron paramagnetic resonance (EPR) spectroscopy, have enhanced the method's utility. This perspective article discusses paramagnetic NMR approaches for analyzing biomolecular complexes in solution and in the solid state, emphasizing quantities like pseudocontact shifts, residual dipolar couplings, and paramagnetic relaxation enhancements. Additionally, dynamic nuclear polarization offers a promising method to amplify NMR signals of large complexes, even in complex environments. The integration of AlphaFold protein structure prediction with paramagnetic NMR holds great potential for advancing our understanding of biomolecular interactions.</p>","PeriodicalId":140,"journal":{"name":"ChemBioChem","volume":" ","pages":"e202400903"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioChem","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbic.202400903","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advances in computational methods like AlphaFold have transformed structural biology, enabling accurate modeling of protein complexes and driving applications in drug discovery and protein engineering. However, predicting the structure of systems involving weak, transient, or dynamic interactions, or of complexes with disordered regions, remains challenging. Nuclear Magnetic Resonance (NMR) spectroscopy offers atomic-level insights into biomolecular complexes, even in weakly interacting and dynamic systems. Paramagnetic NMR, in particular, provides long-range structural restraints, easily exceeding distances over 25 Å, making it ideal for studying large protein complexes. Advances in chemical tools for introducing paramagnetic tags into proteins, combined with progress in electron paramagnetic resonance (EPR) spectroscopy, have enhanced the method's utility. This perspective article discusses paramagnetic NMR approaches for analyzing biomolecular complexes in solution and in the solid state, emphasizing quantities like pseudocontact shifts, residual dipolar couplings, and paramagnetic relaxation enhancements. Additionally, dynamic nuclear polarization offers a promising method to amplify NMR signals of large complexes, even in complex environments. The integration of AlphaFold protein structure prediction with paramagnetic NMR holds great potential for advancing our understanding of biomolecular interactions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用顺磁核磁共振波谱探测生物分子相互作用。
像AlphaFold这样的计算方法的最新进展已经改变了结构生物学,使蛋白质复合物的精确建模成为可能,并推动了药物发现和蛋白质工程的应用。然而,预测涉及弱、瞬态或动态相互作用的系统结构,或具有无序区域的复合物,仍然具有挑战性。核磁共振(NMR)光谱学提供了对生物分子复合物的原子水平的见解,甚至在弱相互作用和动态系统中也是如此。特别是,顺磁核磁共振提供了远距离的结构限制,很容易超过25 Å的距离,使其成为研究大型蛋白质复合物的理想选择。将顺磁标签引入蛋白质的化学工具的进步,加上电子顺磁共振(EPR)光谱学的进展,增强了该方法的实用性。这篇前瞻性的文章讨论了顺磁核磁共振方法用于分析溶液和固态中的生物分子复合物,强调了赝接触位移、残余偶极耦合和顺磁弛豫增强等量。此外,动态核极化为放大大型配合物的核磁共振信号提供了一种很有前途的方法,即使在复杂的环境中也是如此。将AlphaFold蛋白质结构预测与顺磁核磁共振相结合,对于推进我们对生物分子相互作用的理解具有巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemBioChem
ChemBioChem 生物-生化与分子生物学
CiteScore
6.10
自引率
3.10%
发文量
407
审稿时长
1 months
期刊介绍: ChemBioChem (Impact Factor 2018: 2.641) publishes important breakthroughs across all areas at the interface of chemistry and biology, including the fields of chemical biology, bioorganic chemistry, bioinorganic chemistry, synthetic biology, biocatalysis, bionanotechnology, and biomaterials. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and supported by the Asian Chemical Editorial Society (ACES).
期刊最新文献
Expanding the Enzymatic Toolbox for Carboligation: Increasing the Diversity of the 'Split' Transketolase Sequence Space. Silencing of O-GlcNAc transferase attenuated O-GlcNAcylation and metastatic potentials of melanoma cells through suppression of Akt-NFkB signaling pathway. Copper Depletion in Tumors Boosts Immunotherapy. Radical Strategy towards N-glycosides: Current Advances and Future Prospects. Laccase Functional Analysis: Substrates, Activity Assays, Challenges, and Prospects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1