A ratiometric fluorescent probe with dual near infrared emission for in vivo ratio imaging of cysteine.

IF 5.6 1区 化学 Q1 CHEMISTRY, ANALYTICAL Talanta Pub Date : 2025-05-01 Epub Date: 2025-01-13 DOI:10.1016/j.talanta.2025.127564
Bing Zheng, Shulong Wang, Jiayao Xu, Lixian Huang, Shulin Zhao
{"title":"A ratiometric fluorescent probe with dual near infrared emission for in vivo ratio imaging of cysteine.","authors":"Bing Zheng, Shulong Wang, Jiayao Xu, Lixian Huang, Shulin Zhao","doi":"10.1016/j.talanta.2025.127564","DOIUrl":null,"url":null,"abstract":"<p><p>Accurately detecting cysteine (Cys) in vivo is crucial for diagnosing Cys-related diseases. A novel ratiometric fluorescent probe featuring dual near-infrared emission is developed in this study for the in vivo ratio imaging of Cys. The probe comprises a hemicyanine organic small-molecule dye (HCy-CYS) with specific Cys recognition capabilities covalently coupled with carbon dots (CDs) synthesized using glutathione (GSH) as the carbon source (GCDs), forming a unique composite nanofluorescent probe (GCDs@CYS). The probe undergoes a specific reaction with acrylate upon the addition of Cys, converting HCy-CYS to HCy-OH. Consequently, the GCD fluorescence intensity at 685 nm gradually decreases, whereas that of HCy-OH at 720 nm progressively increases, yielding a ratiometric fluorescence signal. Notably, both emission wavelengths of the probe exceed 650 nm, thereby effectively mitigating the interference from background signals during cellular and in vivo imaging. Furthermore, the probe demonstrates high specificity for Cys, enabling its differentiation from homocysteine and GSH. The Cys concentration and fluorescence ratiometric intensity exhibit a strong linear correlation at 10-150 μM with a detection limit of 0.95 μM. These results indicate that the ratiometric fluorescent probe can serve as a valuable tool for monitoring Cys-related physiological or pathological processes.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"286 ","pages":"127564"},"PeriodicalIF":5.6000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2025.127564","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Accurately detecting cysteine (Cys) in vivo is crucial for diagnosing Cys-related diseases. A novel ratiometric fluorescent probe featuring dual near-infrared emission is developed in this study for the in vivo ratio imaging of Cys. The probe comprises a hemicyanine organic small-molecule dye (HCy-CYS) with specific Cys recognition capabilities covalently coupled with carbon dots (CDs) synthesized using glutathione (GSH) as the carbon source (GCDs), forming a unique composite nanofluorescent probe (GCDs@CYS). The probe undergoes a specific reaction with acrylate upon the addition of Cys, converting HCy-CYS to HCy-OH. Consequently, the GCD fluorescence intensity at 685 nm gradually decreases, whereas that of HCy-OH at 720 nm progressively increases, yielding a ratiometric fluorescence signal. Notably, both emission wavelengths of the probe exceed 650 nm, thereby effectively mitigating the interference from background signals during cellular and in vivo imaging. Furthermore, the probe demonstrates high specificity for Cys, enabling its differentiation from homocysteine and GSH. The Cys concentration and fluorescence ratiometric intensity exhibit a strong linear correlation at 10-150 μM with a detection limit of 0.95 μM. These results indicate that the ratiometric fluorescent probe can serve as a valuable tool for monitoring Cys-related physiological or pathological processes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于半胱氨酸体内比例成像的双近红外发射比例荧光探针。
准确检测体内半胱氨酸(Cys)水平对诊断胱氨酸相关疾病至关重要。本研究开发了一种新型的近红外双发射比例荧光探针,用于Cys的体内比例成像。该探针由具有特定Cys识别能力的半花青素有机小分子染料(HCy-CYS)与以谷胱甘肽(GSH)为碳源合成的碳点(CDs)共价偶联,形成独特的复合纳米荧光探针(GCDs@CYS)。在添加Cys后,探针与丙烯酸酯发生特定反应,将HCy-CYS转化为HCy-OH。因此,GCD在685 nm处的荧光强度逐渐降低,而HCy-OH在720 nm处的荧光强度逐渐增加,产生比例荧光信号。值得注意的是,探针的发射波长都超过650 nm,从而有效地减轻了细胞和体内成像过程中背景信号的干扰。此外,该探针对Cys具有高特异性,使其能够与同型半胱氨酸和谷胱甘肽区分开来。在10 ~ 150 μM范围内,Cys浓度与荧光强度呈较强的线性相关,检出限为0.95 μM。这些结果表明,比例荧光探针可以作为一种有价值的工具来监测cys相关的生理或病理过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Talanta
Talanta 化学-分析化学
CiteScore
12.30
自引率
4.90%
发文量
861
审稿时长
29 days
期刊介绍: Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome. Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.
期刊最新文献
Gas and vapor phase detection of chemical threats on cooled SERS substrates. A ratiometric fluorescent probe with dual near infrared emission for in vivo ratio imaging of cysteine. A novel method for detecting genetic biomarkers in blood-based liquid biopsies using surface plasmon resonance imaging and magnetic beads shows promise in cancer diagnosis and monitoring. A signal amplifying MOF-based probe:on-site and ultrasensitive dual-channel portable detection of Hg2+ in groundwater through a fluorimetrically and RGB-based sensing assay. Adding colour to ion-selective membranes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1