{"title":"Tumor cell-derived N-acetyl-aspartyl-glutamate reshapes the tumor microenvironment to facilitate breast cancer metastasis.","authors":"Jie Xia, Lixing Zhang, Wucheng Zhu, Juchuanli Tu, Xilei Peng, Qiaodan Deng, Siqin Li, Xueyan He, Haonan Dong, Cuicui Liu, Xian Chen, Jiahui Xu, Wei Ma, Yi Xiao, Wen Liu, Guohong Hu, Yi-Zhou Jiang, Ceshi Chen, Xiu-Wu Bian, Zhi-Ming Shao, Suling Liu","doi":"10.1016/j.scib.2024.12.039","DOIUrl":null,"url":null,"abstract":"<p><p>Neurotransmitters are increasingly recognized to play important roles in limiting anti-tumor immunity. N-acetyl-aspartyl-glutamate (NAAG) has been extensively studied in neurological disorders; however, its potential role in restricting anti-tumor immunity has not been investigated. Here, we demonstrated that NAAG or its synthetase RimK-like family member B (RIMKLB) significantly disrupted anti-tumor immunity by rewiring the myeloid progenitor differentiation of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs), which in turn promoted breast cancer growth and metastasis. Mechanistically, NAAG sustained the tumor immunosuppressive microenvironment by activating an NR2B-containing NMDA receptor (NR2B-NMDAR)-dependent p38-NOTCH1 axis, and subsequently stimulating tumor cell migration and invasion, as well as inducing PMN-MDSC differentiation and expansion. In mouse models, RIMKLB ablation or NMDAR inhibition enhanced the efficacy of anti-PD-1 therapy and suppressed tumor progression. An analysis of clinical samples revealed that high levels of NAAG and NR2B-NMDAR predicted a poor prognosis in TNBC patients. Collectively, our findings have uncovered a signaling role for tumor-derived NAAG beyond its classic function as a neurotransmitter that can be targeted pharmacologically to enhance immunotherapy against breast cancer.</p>","PeriodicalId":421,"journal":{"name":"Science Bulletin","volume":" ","pages":""},"PeriodicalIF":18.8000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Bulletin","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.scib.2024.12.039","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Neurotransmitters are increasingly recognized to play important roles in limiting anti-tumor immunity. N-acetyl-aspartyl-glutamate (NAAG) has been extensively studied in neurological disorders; however, its potential role in restricting anti-tumor immunity has not been investigated. Here, we demonstrated that NAAG or its synthetase RimK-like family member B (RIMKLB) significantly disrupted anti-tumor immunity by rewiring the myeloid progenitor differentiation of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs), which in turn promoted breast cancer growth and metastasis. Mechanistically, NAAG sustained the tumor immunosuppressive microenvironment by activating an NR2B-containing NMDA receptor (NR2B-NMDAR)-dependent p38-NOTCH1 axis, and subsequently stimulating tumor cell migration and invasion, as well as inducing PMN-MDSC differentiation and expansion. In mouse models, RIMKLB ablation or NMDAR inhibition enhanced the efficacy of anti-PD-1 therapy and suppressed tumor progression. An analysis of clinical samples revealed that high levels of NAAG and NR2B-NMDAR predicted a poor prognosis in TNBC patients. Collectively, our findings have uncovered a signaling role for tumor-derived NAAG beyond its classic function as a neurotransmitter that can be targeted pharmacologically to enhance immunotherapy against breast cancer.
期刊介绍:
Science Bulletin (Sci. Bull., formerly known as Chinese Science Bulletin) is a multidisciplinary academic journal supervised by the Chinese Academy of Sciences (CAS) and co-sponsored by the CAS and the National Natural Science Foundation of China (NSFC). Sci. Bull. is a semi-monthly international journal publishing high-caliber peer-reviewed research on a broad range of natural sciences and high-tech fields on the basis of its originality, scientific significance and whether it is of general interest. In addition, we are committed to serving the scientific community with immediate, authoritative news and valuable insights into upcoming trends around the globe.