Electrocatalytic methane conversion via in-situ generated superoxide radicals in an aprotic ionic liquid.

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2025-04-15 Epub Date: 2025-01-09 DOI:10.1016/j.jcis.2025.01.046
Huiying Qiu, Ang Li, Zhaohui Wang, Qilan Shangguan, Yanzhi Sun, Yang Tang, Pingyu Wan, Haomin Jiang, Yongmei Chen
{"title":"Electrocatalytic methane conversion via in-situ generated superoxide radicals in an aprotic ionic liquid.","authors":"Huiying Qiu, Ang Li, Zhaohui Wang, Qilan Shangguan, Yanzhi Sun, Yang Tang, Pingyu Wan, Haomin Jiang, Yongmei Chen","doi":"10.1016/j.jcis.2025.01.046","DOIUrl":null,"url":null,"abstract":"<p><p>The electrochemical activation and partial oxidation of methane are highly attractive to enable the direct conversion in a sustainable and decentralized way. Herein, we report an electrochemical system in a non-diaphragm electrochemical bath to convert CH<sub>4</sub> to CH<sub>3</sub>OH and CH<sub>3</sub>CH<sub>2</sub>OH at room temperature, in which V<sub>3</sub>O<sub>7</sub>·H<sub>2</sub>O as the anodic catalyst to activate CH<sub>4</sub> and an aprotic ionic liquid [BMIM]BF<sub>4</sub> as supporting electrolyte to control superoxide radicals (O<sub>2</sub><sup>-</sup>) as the main active oxygen species generated on cathode. As a result, methanol and ethanol were identified as the liquid products, and the superior methanol Faraday efficiency (FE) of 32.2 % and selectivity of 76.8 % can be reached. Molecular dynamics (MD) simulation indicates that interaction between CH<sub>4</sub> molecules and [BMIM]BF<sub>4</sub>, which enhances the mass transfer in electrochemical reaction. Density function theory (DFT) calculation results suggest that the V sites in V<sub>3</sub>O<sub>7</sub>·H<sub>2</sub>O enhanced the chemisorption and dissociation of CH<sub>4</sub> molecules on anode surface, then superoxide radicals (O<sub>2</sub><sup>-</sup>) are supposed to be involved in the formation of methanol and ethanol.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"684 Pt 1","pages":"449-456"},"PeriodicalIF":9.4000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2025.01.046","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The electrochemical activation and partial oxidation of methane are highly attractive to enable the direct conversion in a sustainable and decentralized way. Herein, we report an electrochemical system in a non-diaphragm electrochemical bath to convert CH4 to CH3OH and CH3CH2OH at room temperature, in which V3O7·H2O as the anodic catalyst to activate CH4 and an aprotic ionic liquid [BMIM]BF4 as supporting electrolyte to control superoxide radicals (O2-) as the main active oxygen species generated on cathode. As a result, methanol and ethanol were identified as the liquid products, and the superior methanol Faraday efficiency (FE) of 32.2 % and selectivity of 76.8 % can be reached. Molecular dynamics (MD) simulation indicates that interaction between CH4 molecules and [BMIM]BF4, which enhances the mass transfer in electrochemical reaction. Density function theory (DFT) calculation results suggest that the V sites in V3O7·H2O enhanced the chemisorption and dissociation of CH4 molecules on anode surface, then superoxide radicals (O2-) are supposed to be involved in the formation of methanol and ethanol.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非质子离子液体中原位生成超氧自由基的电催化甲烷转化。
甲烷的电化学活化和部分氧化对实现可持续和分散的直接转化具有很大的吸引力。本文报道了一种在非隔膜电化学浴中室温下将CH4转化为CH3OH和CH3CH2OH的电化学体系,其中V3O7·H2O作为阳极催化剂活化CH4,非质子离子液体[BMIM]BF4作为支撑电解质控制超氧自由基(O2-)作为阴极上产生的主要活性氧。结果表明,甲醇和乙醇为液相产物,甲醇法拉第效率(FE)为32.2%,选择性为76.8%。分子动力学(MD)模拟表明,CH4分子与[BMIM]BF4相互作用,增强了电化学反应中的传质。密度泛函理论(DFT)计算结果表明,V3O7·H2O中的V位增强了阳极表面CH4分子的化学吸附和解离,超氧自由基(O2-)可能参与了甲醇和乙醇的生成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
Efficient activation of peroxymonosulfate by Mo2TiC2Tx@Co for sustained emerging micropollutant removal: Mo vacancy-mediated activation in Fenton-like reactions. High-entropy NASICON-Type Li1.3Al0.4Ti0.5Zr0.5Sn0.5Ta0.1(PO4)3 with high electrochemical stability for lithium-ion batteries. Using reduced sericin as a green resist for precise pattern fabrication via water-based lithography. Atomically dispersed rare earth dysprosium-nitrogen-carbon for boosting oxygen reduction reaction. Liquid nitrogen quenching for efficient Bifunctional electrocatalysts in water Splitting: Achieving four key objectives in one step.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1