A Multi-Label Deep Learning Model for Detailed Classification of Alzheimer's Disease.

IF 1 4区 医学 Q4 NEUROSCIENCES Actas espanolas de psiquiatria Pub Date : 2025-01-01 DOI:10.62641/aep.v53i1.1728
Mei Yang, Yuanzhi Zhao, Haihang Yu, Shoulin Chen, Guosheng Gao, Da Li, Xiangping Wu, Ling Huang, Shuyuan Ye
{"title":"A Multi-Label Deep Learning Model for Detailed Classification of Alzheimer's Disease.","authors":"Mei Yang, Yuanzhi Zhao, Haihang Yu, Shoulin Chen, Guosheng Gao, Da Li, Xiangping Wu, Ling Huang, Shuyuan Ye","doi":"10.62641/aep.v53i1.1728","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Accurate diagnosis and classification of Alzheimer's disease (AD) are crucial for effective treatment and management. Traditional diagnostic models, largely based on binary classification systems, fail to adequately capture the complexities and variations across different stages and subtypes of AD, limiting their clinical utility.</p><p><strong>Methods: </strong>We developed a deep learning model integrating a dot-product attention mechanism and an innovative labeling system to enhance the diagnosis and classification of AD subtypes and severity levels. This model processed various clinical and demographic data, emphasizing the most relevant features for AD diagnosis. The approach emphasized precision in identifying disease subtypes and predicting their severity through advanced computational techniques that mimic expert clinical decision-making.</p><p><strong>Results: </strong>Comparative tests against a baseline fully connected neural network demonstrated that our proposed model significantly improved diagnostic accuracy. Our model achieved an accuracy of 83.1% for identifying AD subtypes, compared to 72.9% by the baseline. In severity prediction, our model reached an accuracy of 83.3%, outperforming the baseline (73.5%).</p><p><strong>Conclusions: </strong>The incorporation of a dot-product attention mechanism and a tailored labeling system in our model significantly enhances the accuracy of diagnosing and classifying AD. This improvement highlights the potential of the model to support personalized treatment strategies and advance precision medicine in neurodegenerative diseases.</p>","PeriodicalId":7251,"journal":{"name":"Actas espanolas de psiquiatria","volume":"53 1","pages":"89-99"},"PeriodicalIF":1.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726212/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Actas espanolas de psiquiatria","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.62641/aep.v53i1.1728","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Accurate diagnosis and classification of Alzheimer's disease (AD) are crucial for effective treatment and management. Traditional diagnostic models, largely based on binary classification systems, fail to adequately capture the complexities and variations across different stages and subtypes of AD, limiting their clinical utility.

Methods: We developed a deep learning model integrating a dot-product attention mechanism and an innovative labeling system to enhance the diagnosis and classification of AD subtypes and severity levels. This model processed various clinical and demographic data, emphasizing the most relevant features for AD diagnosis. The approach emphasized precision in identifying disease subtypes and predicting their severity through advanced computational techniques that mimic expert clinical decision-making.

Results: Comparative tests against a baseline fully connected neural network demonstrated that our proposed model significantly improved diagnostic accuracy. Our model achieved an accuracy of 83.1% for identifying AD subtypes, compared to 72.9% by the baseline. In severity prediction, our model reached an accuracy of 83.3%, outperforming the baseline (73.5%).

Conclusions: The incorporation of a dot-product attention mechanism and a tailored labeling system in our model significantly enhances the accuracy of diagnosing and classifying AD. This improvement highlights the potential of the model to support personalized treatment strategies and advance precision medicine in neurodegenerative diseases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于阿尔茨海默病详细分类的多标签深度学习模型。
背景:阿尔茨海默病(AD)的准确诊断和分类是有效治疗和管理的关键。传统的诊断模型主要基于二元分类系统,无法充分捕捉AD不同阶段和亚型的复杂性和变化,限制了其临床应用。方法:我们开发了一个集成点积注意机制和创新标记系统的深度学习模型,以增强AD亚型和严重程度的诊断和分类。该模型处理各种临床和人口统计数据,强调与AD诊断最相关的特征。该方法通过模拟专家临床决策的先进计算技术,强调了识别疾病亚型和预测其严重程度的准确性。结果:与基线全连接神经网络的比较测试表明,我们提出的模型显着提高了诊断准确性。我们的模型在识别AD亚型方面的准确率为83.1%,而基线为72.9%。在严重程度预测方面,我们的模型达到了83.3%的准确率,优于基线(73.5%)。结论:在我们的模型中加入点积注意机制和定制标记系统,显著提高了AD诊断和分类的准确性。这一改进突出了该模型在支持个性化治疗策略和推进神经退行性疾病精准医学方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Actas espanolas de psiquiatria
Actas espanolas de psiquiatria 医学-精神病学
CiteScore
1.70
自引率
6.70%
发文量
46
审稿时长
>12 weeks
期刊介绍: Actas Españolas de Psiquiatría publicará de manera preferente trabajos relacionados con investigación clínica en el área de la Psiquiatría, la Psicología Clínica y la Salud Mental.
期刊最新文献
Psychological Intervention for Depression and Anxiety in Hemodialysis Patients: A Meta-Analysis. Repetitive Transcranial Magnetic Stimulation Combined with Ginkgo Diterpene Lactone Meglumine Injection Recover Cognitive and Neurological Functions of Patients with Acute Ischemic Stroke. The Role of Mindfulness Decompression Therapy in Managing Acute Stress Disorder in Traumatic Fracture Patients. Psychological Status and its Influencing Factors of Staff in a District of Shenzhen: A Retrospective Study. The Significance of Psychological Support in Managing Depression in Parkinson's Disease: Combining Venlafaxine with Pramipexole and Psychological Care.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1