Alisher Alibekov, Mira Meirambayeva, Shugyla Yengsebek, Firyuza Aldyngurova, Woojin Lee
{"title":"Environmental impact of microplastic emissions from wastewater treatment plant through life cycle assessment.","authors":"Alisher Alibekov, Mira Meirambayeva, Shugyla Yengsebek, Firyuza Aldyngurova, Woojin Lee","doi":"10.1016/j.scitotenv.2025.178378","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to quantify the environmental impact of microplastic (MP) emissions from wastewater treatment plants (WWTPs) using life cycle assessment (LCA). The investigation comprehensively evaluated the contribution of MPs to overall WWTP midpoint and endpoint impacts, with a detailed analysis of the influence of particle size, shape, polymer type, and the environmental costs and benefits of individual wastewater treatment processes on MP removal. The LCA model was developed using SimaPro software, with impact assessments conducted via the USEtox framework and the IMPACT World+ methodology. Results showed that at the midpoint level, MPs accounted for 1.24E+05 CTUe (94 % of the total plant impact), representing the potential harm to aquatic species per cubic meter of discharged wastewater-surpassing the impacts of other contaminants (e.g., heavy metals, nutrients) by at least two orders of magnitude. At the endpoint level, the damage of 8.39E-02 PDF·m<sup>2</sup>·yr (1.7 % of the total) indicated the potential loss of species diversity, comparable to other pollutant contributions. Polyethylene, polystyrene, and polypropylene were identified as the most impactful polymer types. In terms of environmental costs and benefits, secondary, tertiary, and primary treatments demonstrated decreasing environmental benefits, directly correlated with their respective MP removal efficiencies. These findings underscore the critical role of MP emissions in WWTP life cycle inventories and highlight the urgent need for targeted environmental policies and advanced treatment technologies to address MP contamination in both natural and engineered aquatic systems.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"962 ","pages":"178378"},"PeriodicalIF":8.2000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2025.178378","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to quantify the environmental impact of microplastic (MP) emissions from wastewater treatment plants (WWTPs) using life cycle assessment (LCA). The investigation comprehensively evaluated the contribution of MPs to overall WWTP midpoint and endpoint impacts, with a detailed analysis of the influence of particle size, shape, polymer type, and the environmental costs and benefits of individual wastewater treatment processes on MP removal. The LCA model was developed using SimaPro software, with impact assessments conducted via the USEtox framework and the IMPACT World+ methodology. Results showed that at the midpoint level, MPs accounted for 1.24E+05 CTUe (94 % of the total plant impact), representing the potential harm to aquatic species per cubic meter of discharged wastewater-surpassing the impacts of other contaminants (e.g., heavy metals, nutrients) by at least two orders of magnitude. At the endpoint level, the damage of 8.39E-02 PDF·m2·yr (1.7 % of the total) indicated the potential loss of species diversity, comparable to other pollutant contributions. Polyethylene, polystyrene, and polypropylene were identified as the most impactful polymer types. In terms of environmental costs and benefits, secondary, tertiary, and primary treatments demonstrated decreasing environmental benefits, directly correlated with their respective MP removal efficiencies. These findings underscore the critical role of MP emissions in WWTP life cycle inventories and highlight the urgent need for targeted environmental policies and advanced treatment technologies to address MP contamination in both natural and engineered aquatic systems.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.