Hongbo Li, Yuchen Zhang, Suling Tian, Xianjun Gao, Tian Su, Yanyan Li, Yang Zou, Xiaohong Chen, Hongjuan Li, Jinghua Yu
{"title":"Research of carrying mechanism between β-lactoglobulin and linoleic acid: Effects on protein structure and oxidative stability of linoleic acid.","authors":"Hongbo Li, Yuchen Zhang, Suling Tian, Xianjun Gao, Tian Su, Yanyan Li, Yang Zou, Xiaohong Chen, Hongjuan Li, Jinghua Yu","doi":"10.1016/j.bbrc.2025.151298","DOIUrl":null,"url":null,"abstract":"<p><p>Spectroscopic techniques and molecular docking were employed to explore the binding mechanism and structural characteristics of β-lactoglobulin (β-lg) with linoleic acid. The research revealed that the interaction between β-lg and linoleic acid was primarily governed by static quenching. The attachment of linoleic acid to β-lg happened naturally via hydrophobic forces. The interaction between β-lg and linoleic acid had minimal impact on the area surrounding the tryptophan and tyrosine residues in β-lg, and it does not notably change the secondary structure of β-lg. Results of molecular docking and molecular dynamics indicated that linoleic acid binds mainly to the hydrophobic cavity inside β-lg, closer to the tryptophan residues.At the same time the stability of the proteins in the complex was significantly improved compared to the free β-lg. The stability against oxidation and the shelf life of the β-lg/linoleic acid complex were evaluated as well. Compared to free linoleic acid, the complex exhibited lower peroxide and anisidine values, suggesting that its formation with β-lg reduced the creation of primary oxidation products.</p>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"747 ","pages":"151298"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bbrc.2025.151298","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Spectroscopic techniques and molecular docking were employed to explore the binding mechanism and structural characteristics of β-lactoglobulin (β-lg) with linoleic acid. The research revealed that the interaction between β-lg and linoleic acid was primarily governed by static quenching. The attachment of linoleic acid to β-lg happened naturally via hydrophobic forces. The interaction between β-lg and linoleic acid had minimal impact on the area surrounding the tryptophan and tyrosine residues in β-lg, and it does not notably change the secondary structure of β-lg. Results of molecular docking and molecular dynamics indicated that linoleic acid binds mainly to the hydrophobic cavity inside β-lg, closer to the tryptophan residues.At the same time the stability of the proteins in the complex was significantly improved compared to the free β-lg. The stability against oxidation and the shelf life of the β-lg/linoleic acid complex were evaluated as well. Compared to free linoleic acid, the complex exhibited lower peroxide and anisidine values, suggesting that its formation with β-lg reduced the creation of primary oxidation products.
期刊介绍:
Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology
; molecular biology; neurobiology; plant biology and proteomics