Enrico Pozzo, Laura Yedigaryan, Nefele Giarratana, Chao-Chi Wang, Gabriel Miró Garrido, Ewoud Degreef, Vittoria Marini, Gianmarco Rinaldi, Bernard K van der Veer, Gabriele Sassi, Guy Eelen, Mélanie Planque, Alessandro Fanzani, Kian Peng Koh, Peter Carmeliet, Jason T Yustein, Sarah-Maria Fendt, Anne Uyttebroeck, Maurilio Sampaolesi
{"title":"miR-449a/miR-340 reprogram cell identity and metabolism in fusion-negative rhabdomyosarcoma.","authors":"Enrico Pozzo, Laura Yedigaryan, Nefele Giarratana, Chao-Chi Wang, Gabriel Miró Garrido, Ewoud Degreef, Vittoria Marini, Gianmarco Rinaldi, Bernard K van der Veer, Gabriele Sassi, Guy Eelen, Mélanie Planque, Alessandro Fanzani, Kian Peng Koh, Peter Carmeliet, Jason T Yustein, Sarah-Maria Fendt, Anne Uyttebroeck, Maurilio Sampaolesi","doi":"10.1016/j.celrep.2024.115171","DOIUrl":null,"url":null,"abstract":"<p><p>Rhabdomyosarcoma (RMS), the most common pediatric soft tissue sarcoma, arises in skeletal muscle and remains in an undifferentiated state due to transcriptional and post-transcriptional regulators. Among its subtypes, fusion-negative RMS (FN-RMS) accounts for the majority of diagnoses in the pediatric population. MicroRNAs (miRNAs) are non-coding RNAs that modulate cell identity via post-transcriptional regulation of messenger RNAs (mRNAs). In this study, we identify miRNAs impacting FN-RMS cell identity, revealing miR-449a and miR-340 as major regulators of the cell cycle and p53 signaling. Through miR-eCLIP technology, we demonstrate that miR-449a and miR-340 directly target transcripts involved in glycolysis and mitochondrial pyruvate transport, inhibiting the mitochondrial pyruvate carrier (MPC) complex. Pharmacological MPC inhibition induces a similar metabolic shift, reducing metastatic potential and leading to cell cycle exit. Overall, miR-449 and miR-340 orchestrate FN-RMS cell identity, positioning MPC inhibition as a strategy to shift FN-RMS cells toward a non-tumorigenic, quiescent state.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 1","pages":"115171"},"PeriodicalIF":7.5000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2024.115171","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Rhabdomyosarcoma (RMS), the most common pediatric soft tissue sarcoma, arises in skeletal muscle and remains in an undifferentiated state due to transcriptional and post-transcriptional regulators. Among its subtypes, fusion-negative RMS (FN-RMS) accounts for the majority of diagnoses in the pediatric population. MicroRNAs (miRNAs) are non-coding RNAs that modulate cell identity via post-transcriptional regulation of messenger RNAs (mRNAs). In this study, we identify miRNAs impacting FN-RMS cell identity, revealing miR-449a and miR-340 as major regulators of the cell cycle and p53 signaling. Through miR-eCLIP technology, we demonstrate that miR-449a and miR-340 directly target transcripts involved in glycolysis and mitochondrial pyruvate transport, inhibiting the mitochondrial pyruvate carrier (MPC) complex. Pharmacological MPC inhibition induces a similar metabolic shift, reducing metastatic potential and leading to cell cycle exit. Overall, miR-449 and miR-340 orchestrate FN-RMS cell identity, positioning MPC inhibition as a strategy to shift FN-RMS cells toward a non-tumorigenic, quiescent state.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.