Optimizations of Placenta Extracellular Matrix-Loaded Silk Fibroin/Alginate 3D-Printed Scaffolds Structurally and Functionally for Bone Tissue Engineering.
{"title":"Optimizations of Placenta Extracellular Matrix-Loaded Silk Fibroin/Alginate 3D-Printed Scaffolds Structurally and Functionally for Bone Tissue Engineering.","authors":"Zahra Bashiri, Zahra Khosrowpour, Ali Moghaddaszadeh, Davod Jafari, Sanaz Alizadeh, Hajar Nasiri, Houman Parsaei, Zahra Keshtkaran, Meghdad Abdollahpour-Alitappeh, Farshad Bargrizaneh, Behzad Rezaei, Sara Simorgh, Mazaher Gholipourmalekabadi","doi":"10.1002/elsc.202400085","DOIUrl":null,"url":null,"abstract":"<p><p>Recent interest has been focused on extracellular matrix (ECM)-based scaffolds totreat critical-sized bone injuries. In this study, urea was used to decellularize and solubilize human placenta tissue. Then, different concentrations of ECM were composited with 8% alginate (Alg) and 12% silk fibroin (SF) for printing in order to produce a natural 3D construct that resembled bone tissue. The physical and biological features of the printed structures were evaluated entirely in vitro. Finally, a rat model was employed to examine the optimal 3D printed scaffold (5% ECM) as a bone transplant for the healing of cranial bone lesions. The present investigation demonstrated that decellularizing placental tissue fragments led to efficient removal of cell debris. In addition, a remarkable improvement in the printed scaffolds' mechanical and biological properties was observed by increasing the ECM concentration. The histology studies and real-time PCR results demonstrated the acceleration of bone regeneration in the bone lesions treated with 5%ECM-SF/Alg at 4 and 8 weeks after implantation. Overall, these results proved that the placental ECM-printed scaffolds could potentially construct biomimetic grafts to reconstruct significant bone defects and now promise to proceed with clinical studies.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"25 1","pages":"e202400085"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11717148/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering in Life Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/elsc.202400085","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Recent interest has been focused on extracellular matrix (ECM)-based scaffolds totreat critical-sized bone injuries. In this study, urea was used to decellularize and solubilize human placenta tissue. Then, different concentrations of ECM were composited with 8% alginate (Alg) and 12% silk fibroin (SF) for printing in order to produce a natural 3D construct that resembled bone tissue. The physical and biological features of the printed structures were evaluated entirely in vitro. Finally, a rat model was employed to examine the optimal 3D printed scaffold (5% ECM) as a bone transplant for the healing of cranial bone lesions. The present investigation demonstrated that decellularizing placental tissue fragments led to efficient removal of cell debris. In addition, a remarkable improvement in the printed scaffolds' mechanical and biological properties was observed by increasing the ECM concentration. The histology studies and real-time PCR results demonstrated the acceleration of bone regeneration in the bone lesions treated with 5%ECM-SF/Alg at 4 and 8 weeks after implantation. Overall, these results proved that the placental ECM-printed scaffolds could potentially construct biomimetic grafts to reconstruct significant bone defects and now promise to proceed with clinical studies.
期刊介绍:
Engineering in Life Sciences (ELS) focuses on engineering principles and innovations in life sciences and biotechnology. Life sciences and biotechnology covered in ELS encompass the use of biomolecules (e.g. proteins/enzymes), cells (microbial, plant and mammalian origins) and biomaterials for biosynthesis, biotransformation, cell-based treatment and bio-based solutions in industrial and pharmaceutical biotechnologies as well as in biomedicine. ELS especially aims to promote interdisciplinary collaborations among biologists, biotechnologists and engineers for quantitative understanding and holistic engineering (design-built-test) of biological parts and processes in the different application areas.