Enhancing fat graft survival: thymosin beta-4 facilitates mitochondrial transfer from ADSCs via tunneling nanotubes by upregulating the Rac/F-actin pathway.
Xiaoyu Zhang, Yan Lin, Haoran Li, Qian Wang, Dali Mu
{"title":"Enhancing fat graft survival: thymosin beta-4 facilitates mitochondrial transfer from ADSCs via tunneling nanotubes by upregulating the Rac/F-actin pathway.","authors":"Xiaoyu Zhang, Yan Lin, Haoran Li, Qian Wang, Dali Mu","doi":"10.1016/j.freeradbiomed.2024.12.061","DOIUrl":null,"url":null,"abstract":"<p><p>Autologous fat grafting is a widely used technique in plastic and reconstructive surgery, but its efficacy is often limited by the poor survival rate of transplanted adipose tissue. This study aims to enhance the survival of fat grafts by investigating the role of thymosin beta-4 (Tβ4) in facilitating mitochondrial transfer from adipose-derived stem cells (ADSCs) to adipocytes and newly formed blood vessels within the grafts via tunneling nanotubes (TNTs). We demonstrate that Tβ4 upregulates the Rac/F-actin pathway, leading to an increased formation of TNTs and subsequent transfer of mitochondria from ADSCs. This process mitigates oxidative stress, reduces apoptosis, and promotes revascularization, thereby improving the quality and volume retention of fat grafts. Our findings provide a novel mechanistic insight into the enhancement of fat graft survival and suggest that mitochondrial transplantation and Tβ4 are potential therapeutic strategies to improve clinical outcomes in autologous fat transfer procedures.</p>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":"228 ","pages":"281-298"},"PeriodicalIF":7.1000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.freeradbiomed.2024.12.061","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Autologous fat grafting is a widely used technique in plastic and reconstructive surgery, but its efficacy is often limited by the poor survival rate of transplanted adipose tissue. This study aims to enhance the survival of fat grafts by investigating the role of thymosin beta-4 (Tβ4) in facilitating mitochondrial transfer from adipose-derived stem cells (ADSCs) to adipocytes and newly formed blood vessels within the grafts via tunneling nanotubes (TNTs). We demonstrate that Tβ4 upregulates the Rac/F-actin pathway, leading to an increased formation of TNTs and subsequent transfer of mitochondria from ADSCs. This process mitigates oxidative stress, reduces apoptosis, and promotes revascularization, thereby improving the quality and volume retention of fat grafts. Our findings provide a novel mechanistic insight into the enhancement of fat graft survival and suggest that mitochondrial transplantation and Tβ4 are potential therapeutic strategies to improve clinical outcomes in autologous fat transfer procedures.
期刊介绍:
Free Radical Biology and Medicine is a leading journal in the field of redox biology, which is the study of the role of reactive oxygen species (ROS) and other oxidizing agents in biological systems. The journal serves as a premier forum for publishing innovative and groundbreaking research that explores the redox biology of health and disease, covering a wide range of topics and disciplines. Free Radical Biology and Medicine also commissions Special Issues that highlight recent advances in both basic and clinical research, with a particular emphasis on the mechanisms underlying altered metabolism and redox signaling. These Special Issues aim to provide a focused platform for the latest research in the field, fostering collaboration and knowledge exchange among researchers and clinicians.