Rozina Akter, Mohammad Ali Asgor Moral, Khalequzzaman Md, Bashar A K M
{"title":"Biomimetic Effect of Saliva on Human Tooth Enamel: A Scanning Electron Microscopic Study.","authors":"Rozina Akter, Mohammad Ali Asgor Moral, Khalequzzaman Md, Bashar A K M","doi":"10.1155/ijod/1664620","DOIUrl":null,"url":null,"abstract":"<p><p><b>Introduction:</b> Due to the presence of ion reservoir, saliva may facilitate enamel remineralization and neutralize pH of acidic beverage leads to prevent enamel demineralization. Saliva substitute/artificial saliva has been developed in subsequent years and may differ in physical properties, function, or pH level from 5.0 to 7.3. <b>Objectives:</b> To evaluate the biomimetic effect of saliva (neutralization) on tooth enamel exposed to carbonated beverage (pH 2.44) and to observe therapeutic capability (remineralization) of artificial saliva over previously eroded (grade 3 and grade 5) enamel surface. <b>Methods:</b> After scanning with electron microscope (SEM-EDX), nondemineralized crown samples (<i>n</i> = 40) were randomly grouped into two. Samples (50%) were flushed all around to carbonated beverage with collected natural saliva bathing simultaneously (experimental group, <i>n</i> = 20), and the rest flushed to beverage only without saliva bathing simultaneously (control group, <i>n</i> = 20). Flushing action was performed for 3 min by a customized digital automatic flusher for 30 times for each sample. Samples (<i>n</i> = 40) were further scanned under SEM-EDX to evaluate the demineralization grade and concentration of Ca, P, O, and C elements of crown samples to find out the neutralization effect of saliva. In the second phase, already demineralized crown samples (<i>n</i> = 30) were randomly treated with artificial saliva having two different pH (7 or 6.8, experimental groups) and distilled water (control group) for 15 min 3 times daily for 30 days. The remineralization score of experimental samples was graded, and therapeutic capability was established. <b>Results:</b> Samples, when exposed to a carbonated beverage with saliva bathing simultaneously, showed low level of demineralization (mean 2.9 ± 0.3) than the control (without saliva) (mean 4.8 ± 0.3) (<i>p</i> = 0.01) which indicated neutralization (bioimimetic) effect of natural saliva. All (100%) of demineralized samples treated with both artificial saliva (pH 7 or pH 6.8) showed significant remineralization (<i>p</i> = 0.01), thus revealed biomimetic capacity. SEM-EDX analysis showed initial (before beverage exposure) concentrations of calcium, phosphorus, oxygen, and carbon elements of crown samples were 32.48%, 31.5%, 28.3%, and 5.5%, respectively. The calcium (Ca) (9.7%) and phosphorous (P) (18.5%) values were more decreased after beverage exposure without saliva bathing simultaneously compared to after beverage exposure with saliva bathing simultaneously. The concentration of oxygen (54.4%) and carbon (15.5%) were more increased after beverage exposure without saliva bathing simultaneously compared to after beverage exposure with saliva bathing simultaneously. Though the concentration of calcium (38.5%) of the crown sample was increased after treatment with artificial saliva (pH 7), but the phosphorus (18.5%) concentration of the crown sample was not increased. <b>Conclusion:</b> Within the context of the present study, both natural and artificial saliva showed significant biomimetic effects with respect to neutralization and remineralization.</p>","PeriodicalId":13947,"journal":{"name":"International Journal of Dentistry","volume":"2025 ","pages":"1664620"},"PeriodicalIF":1.9000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11724731/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Dentistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/ijod/1664620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Due to the presence of ion reservoir, saliva may facilitate enamel remineralization and neutralize pH of acidic beverage leads to prevent enamel demineralization. Saliva substitute/artificial saliva has been developed in subsequent years and may differ in physical properties, function, or pH level from 5.0 to 7.3. Objectives: To evaluate the biomimetic effect of saliva (neutralization) on tooth enamel exposed to carbonated beverage (pH 2.44) and to observe therapeutic capability (remineralization) of artificial saliva over previously eroded (grade 3 and grade 5) enamel surface. Methods: After scanning with electron microscope (SEM-EDX), nondemineralized crown samples (n = 40) were randomly grouped into two. Samples (50%) were flushed all around to carbonated beverage with collected natural saliva bathing simultaneously (experimental group, n = 20), and the rest flushed to beverage only without saliva bathing simultaneously (control group, n = 20). Flushing action was performed for 3 min by a customized digital automatic flusher for 30 times for each sample. Samples (n = 40) were further scanned under SEM-EDX to evaluate the demineralization grade and concentration of Ca, P, O, and C elements of crown samples to find out the neutralization effect of saliva. In the second phase, already demineralized crown samples (n = 30) were randomly treated with artificial saliva having two different pH (7 or 6.8, experimental groups) and distilled water (control group) for 15 min 3 times daily for 30 days. The remineralization score of experimental samples was graded, and therapeutic capability was established. Results: Samples, when exposed to a carbonated beverage with saliva bathing simultaneously, showed low level of demineralization (mean 2.9 ± 0.3) than the control (without saliva) (mean 4.8 ± 0.3) (p = 0.01) which indicated neutralization (bioimimetic) effect of natural saliva. All (100%) of demineralized samples treated with both artificial saliva (pH 7 or pH 6.8) showed significant remineralization (p = 0.01), thus revealed biomimetic capacity. SEM-EDX analysis showed initial (before beverage exposure) concentrations of calcium, phosphorus, oxygen, and carbon elements of crown samples were 32.48%, 31.5%, 28.3%, and 5.5%, respectively. The calcium (Ca) (9.7%) and phosphorous (P) (18.5%) values were more decreased after beverage exposure without saliva bathing simultaneously compared to after beverage exposure with saliva bathing simultaneously. The concentration of oxygen (54.4%) and carbon (15.5%) were more increased after beverage exposure without saliva bathing simultaneously compared to after beverage exposure with saliva bathing simultaneously. Though the concentration of calcium (38.5%) of the crown sample was increased after treatment with artificial saliva (pH 7), but the phosphorus (18.5%) concentration of the crown sample was not increased. Conclusion: Within the context of the present study, both natural and artificial saliva showed significant biomimetic effects with respect to neutralization and remineralization.