Rachel Bernardo, Nick S Nurmohamed, Michiel J Bom, Ruurt Jukema, Ruben W de Winter, Ralf Sprengers, Erik S G Stroes, James K Min, James Earls, Ibrahim Danad, Andrew D Choi, Paul Knaapen
{"title":"Diagnostic accuracy in coronary CT angiography analysis: artificial intelligence versus human assessment.","authors":"Rachel Bernardo, Nick S Nurmohamed, Michiel J Bom, Ruurt Jukema, Ruben W de Winter, Ralf Sprengers, Erik S G Stroes, James K Min, James Earls, Ibrahim Danad, Andrew D Choi, Paul Knaapen","doi":"10.1136/openhrt-2024-003115","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Visual assessment of coronary CT angiography (CCTA) is time-consuming, influenced by reader experience and prone to interobserver variability. This study evaluated a novel algorithm for coronary stenosis quantification (atherosclerosis imaging quantitative CT, AI-QCT).</p><p><strong>Methods: </strong>The study included 208 patients with suspected coronary artery disease (CAD) undergoing CCTA in Perfusion Imaging and CT Coronary Angiography With Invasive Coronary Angiography-1. AI-QCT and blinded readers assessed coronary artery stenosis following the Coronary Artery Disease Reporting and Data System consensus. Accuracy of AI-QCT was compared with a level 3 and two level 2 clinical readers against an invasive quantitative coronary angiography (QCA) reference standard (≥50% stenosis) in an area under the curve (AUC) analysis, evaluated per-patient and per-vessel and stratified by plaque volume.</p><p><strong>Results: </strong>Among 208 patients with a mean age of 58±9 years and 37% women, AI-QCT demonstrated superior concordance with QCA compared with clinical CCTA assessments. For the detection of obstructive stenosis (≥50%), AI-QCT achieved an AUC of 0.91 on a per-patient level, outperforming level 3 (AUC 0.77; p<0.002) and level 2 readers (AUC 0.79; p<0.001 and AUC 0.76; p<0.001). The advantage of AI-QCT was most prominent in those with above median plaque volume. At the per-vessel level, AI-QCT achieved an AUC of 0.86, similar to level 3 (AUC 0.82; p=0.098) stenosis, but superior to level 2 readers (both AUC 0.69; p<0.001).</p><p><strong>Conclusions: </strong>AI-QCT demonstrated superior agreement with invasive QCA compared to clinical CCTA assessments, particularly compared to level 2 readers in those with extensive CAD. Integrating AI-QCT into routine clinical practice holds promise for improving the accuracy of stenosis quantification through CCTA.</p>","PeriodicalId":19505,"journal":{"name":"Open Heart","volume":"12 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784206/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Heart","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1136/openhrt-2024-003115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Visual assessment of coronary CT angiography (CCTA) is time-consuming, influenced by reader experience and prone to interobserver variability. This study evaluated a novel algorithm for coronary stenosis quantification (atherosclerosis imaging quantitative CT, AI-QCT).
Methods: The study included 208 patients with suspected coronary artery disease (CAD) undergoing CCTA in Perfusion Imaging and CT Coronary Angiography With Invasive Coronary Angiography-1. AI-QCT and blinded readers assessed coronary artery stenosis following the Coronary Artery Disease Reporting and Data System consensus. Accuracy of AI-QCT was compared with a level 3 and two level 2 clinical readers against an invasive quantitative coronary angiography (QCA) reference standard (≥50% stenosis) in an area under the curve (AUC) analysis, evaluated per-patient and per-vessel and stratified by plaque volume.
Results: Among 208 patients with a mean age of 58±9 years and 37% women, AI-QCT demonstrated superior concordance with QCA compared with clinical CCTA assessments. For the detection of obstructive stenosis (≥50%), AI-QCT achieved an AUC of 0.91 on a per-patient level, outperforming level 3 (AUC 0.77; p<0.002) and level 2 readers (AUC 0.79; p<0.001 and AUC 0.76; p<0.001). The advantage of AI-QCT was most prominent in those with above median plaque volume. At the per-vessel level, AI-QCT achieved an AUC of 0.86, similar to level 3 (AUC 0.82; p=0.098) stenosis, but superior to level 2 readers (both AUC 0.69; p<0.001).
Conclusions: AI-QCT demonstrated superior agreement with invasive QCA compared to clinical CCTA assessments, particularly compared to level 2 readers in those with extensive CAD. Integrating AI-QCT into routine clinical practice holds promise for improving the accuracy of stenosis quantification through CCTA.
期刊介绍:
Open Heart is an online-only, open access cardiology journal that aims to be “open” in many ways: open access (free access for all readers), open peer review (unblinded peer review) and open data (data sharing is encouraged). The goal is to ensure maximum transparency and maximum impact on research progress and patient care. The journal is dedicated to publishing high quality, peer reviewed medical research in all disciplines and therapeutic areas of cardiovascular medicine. Research is published across all study phases and designs, from study protocols to phase I trials to meta-analyses, including small or specialist studies. Opinionated discussions on controversial topics are welcomed. Open Heart aims to operate a fast submission and review process with continuous publication online, to ensure timely, up-to-date research is available worldwide. The journal adheres to a rigorous and transparent peer review process, and all articles go through a statistical assessment to ensure robustness of the analyses. Open Heart is an official journal of the British Cardiovascular Society.