José D. Antonino , Shalini Chaudhary , Mark Lubberts , Brendan J. McConkey , Camilla A.S. Valença , Marcus V. de Aragão Batista , Patricia Severino , Marcelo da Costa Mendonça , Eliana B. Souto , Silvio S. Dolabella , Sona Jain
{"title":"Phylogenetic analysis and homology modelling of a new Cry8A crystal protein expressed in a sporulating soil bacterium","authors":"José D. Antonino , Shalini Chaudhary , Mark Lubberts , Brendan J. McConkey , Camilla A.S. Valença , Marcus V. de Aragão Batista , Patricia Severino , Marcelo da Costa Mendonça , Eliana B. Souto , Silvio S. Dolabella , Sona Jain","doi":"10.1016/j.jsb.2025.108167","DOIUrl":null,"url":null,"abstract":"<div><div>Cry proteins, commonly found in Gram-positive soil bacteria, are used worldwide as aerial sprays or in transgenic plants for controlling crop pest populations and insect vectors<em>.</em> Via PCR analysis, a spore producing soil isolate (BV5) was speculated to encode a Cry gene. Partial nucleotide sequence of the amplified PCR fragment showed homology with the Cry8 genes present in GenBank. A full-length Cry gene was cloned, and the predicted protein sequence grouped the newly isolated Cry protein with other Cry8A present in GenBank with a high possibility of it being a new Cry8. SDS-PAGE and MALDI-TOF mass spectrometry confirmed the expression of a single 135 KDa protein matching uniquely to the putative protein sequence of the BV5 Cry gene. However, bioassay against the coleopteran <em>Anthonomus grandis</em> (Coleopterans are a known Cry8A target), showed no activity. Phylogenetic analysis and homology modelling was performed to characterize the protein structure and function. These analyses suggest a series of mutations in one of the variable loops on the surface of the protein.</div></div>","PeriodicalId":17074,"journal":{"name":"Journal of structural biology","volume":"217 1","pages":"Article 108167"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047847725000024","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cry proteins, commonly found in Gram-positive soil bacteria, are used worldwide as aerial sprays or in transgenic plants for controlling crop pest populations and insect vectors. Via PCR analysis, a spore producing soil isolate (BV5) was speculated to encode a Cry gene. Partial nucleotide sequence of the amplified PCR fragment showed homology with the Cry8 genes present in GenBank. A full-length Cry gene was cloned, and the predicted protein sequence grouped the newly isolated Cry protein with other Cry8A present in GenBank with a high possibility of it being a new Cry8. SDS-PAGE and MALDI-TOF mass spectrometry confirmed the expression of a single 135 KDa protein matching uniquely to the putative protein sequence of the BV5 Cry gene. However, bioassay against the coleopteran Anthonomus grandis (Coleopterans are a known Cry8A target), showed no activity. Phylogenetic analysis and homology modelling was performed to characterize the protein structure and function. These analyses suggest a series of mutations in one of the variable loops on the surface of the protein.
期刊介绍:
Journal of Structural Biology (JSB) has an open access mirror journal, the Journal of Structural Biology: X (JSBX), sharing the same aims and scope, editorial team, submission system and rigorous peer review. Since both journals share the same editorial system, you may submit your manuscript via either journal homepage. You will be prompted during submission (and revision) to choose in which to publish your article. The editors and reviewers are not aware of the choice you made until the article has been published online. JSB and JSBX publish papers dealing with the structural analysis of living material at every level of organization by all methods that lead to an understanding of biological function in terms of molecular and supermolecular structure.
Techniques covered include:
• Light microscopy including confocal microscopy
• All types of electron microscopy
• X-ray diffraction
• Nuclear magnetic resonance
• Scanning force microscopy, scanning probe microscopy, and tunneling microscopy
• Digital image processing
• Computational insights into structure