Determining the effects of transcranial alternating current stimulation on corticomotor excitability and motor performance: A sham-controlled comparison of four frequencies.
Mohamad Rostami, Annemarie Lee, Ashlyn K Frazer, Yonas Akalu, Ummatul Siddique, Alan J Pearce, Jamie Tallent, Dawson J Kidgell
{"title":"Determining the effects of transcranial alternating current stimulation on corticomotor excitability and motor performance: A sham-controlled comparison of four frequencies.","authors":"Mohamad Rostami, Annemarie Lee, Ashlyn K Frazer, Yonas Akalu, Ummatul Siddique, Alan J Pearce, Jamie Tallent, Dawson J Kidgell","doi":"10.1016/j.neuroscience.2025.01.016","DOIUrl":null,"url":null,"abstract":"<p><p>Transcranial alternating current stimulation (tACS) modulates brain oscillations and corticomotor plasticity. We examined the effects of four tACS frequencies (20 Hz, 40 Hz, 60 Hz, and 80 Hz) on motor cortex (M1) excitability and motor performance. In a randomised crossover design, 12 adults received 20-minute tACS sessions, with Sham as control. Corticomotor and intracortical excitability was measured up to 60-minutes post-tACS. Motor performance was evaluated using the Grooved Pegboard Test (GPT) and sensorimotor assessments. Our findings demonstrated frequency-dependent modulation of corticomotor excitability based on MEP amplitude. 20 Hz and 40 Hz tACS reduced MEPs, while 60 Hz and 80 Hz increased MEPs. Inhibition (cortical silent period, SP) was reduced across all tACS frequencies compared to Sham, with 20 Hz and 40 Hz showing consistent reductions, 60 Hz showing effects at post-0 and post-30, and 80 Hz at post-60. Furthermore, 60 Hz tACS decreased intracortical inhibition at post-0, while intracortical facilitation increased with 20 Hz and 60 Hz at post-0, and 40 Hz at post-60. Motor performance remained unaffected across frequencies. Regression analyses revealed that shorter SP at 60 min post 60 Hz tACS predicted faster reaction times, while greater MEP amplitudes at 60 min following 80 Hz tACS predicted improved hand dexterity. Overall, beta and gamma tACS frequencies modulate M1 excitability, with consistent effects on SP, suggesting potential use in conditions involving SP elongation, such as stroke and Huntington's disease. These findings highlight 60 Hz tACS as a potential tool for motor rehabilitation therapies.</p>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":" ","pages":"12-26"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuroscience.2025.01.016","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Transcranial alternating current stimulation (tACS) modulates brain oscillations and corticomotor plasticity. We examined the effects of four tACS frequencies (20 Hz, 40 Hz, 60 Hz, and 80 Hz) on motor cortex (M1) excitability and motor performance. In a randomised crossover design, 12 adults received 20-minute tACS sessions, with Sham as control. Corticomotor and intracortical excitability was measured up to 60-minutes post-tACS. Motor performance was evaluated using the Grooved Pegboard Test (GPT) and sensorimotor assessments. Our findings demonstrated frequency-dependent modulation of corticomotor excitability based on MEP amplitude. 20 Hz and 40 Hz tACS reduced MEPs, while 60 Hz and 80 Hz increased MEPs. Inhibition (cortical silent period, SP) was reduced across all tACS frequencies compared to Sham, with 20 Hz and 40 Hz showing consistent reductions, 60 Hz showing effects at post-0 and post-30, and 80 Hz at post-60. Furthermore, 60 Hz tACS decreased intracortical inhibition at post-0, while intracortical facilitation increased with 20 Hz and 60 Hz at post-0, and 40 Hz at post-60. Motor performance remained unaffected across frequencies. Regression analyses revealed that shorter SP at 60 min post 60 Hz tACS predicted faster reaction times, while greater MEP amplitudes at 60 min following 80 Hz tACS predicted improved hand dexterity. Overall, beta and gamma tACS frequencies modulate M1 excitability, with consistent effects on SP, suggesting potential use in conditions involving SP elongation, such as stroke and Huntington's disease. These findings highlight 60 Hz tACS as a potential tool for motor rehabilitation therapies.
期刊介绍:
Neuroscience publishes papers describing the results of original research on any aspect of the scientific study of the nervous system. Any paper, however short, will be considered for publication provided that it reports significant, new and carefully confirmed findings with full experimental details.