Jianan Yang, Yujie Han, Xianping Diao, Baochang Yuan, Jun Gu
{"title":"Screening of obstructive sleep apnea and diabetes mellitus -related biomarkers based on integrated bioinformatics analysis and machine learning.","authors":"Jianan Yang, Yujie Han, Xianping Diao, Baochang Yuan, Jun Gu","doi":"10.1007/s11325-024-03240-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The pathophysiology of obstructive sleep apnea (OSA) and diabetes mellitus (DM) is still unknown, despite clinical reports linking the two conditions. After investigating potential roles for DM-related genes in the pathophysiology of OSA, our goal is to investigate the molecular significance of the condition. Machine learning is a useful approach to understanding complex gene expression data to find biomarkers for the diagnosis of OSA.</p><p><strong>Methods: </strong>Differentially expressed analysis for OSA and DM data sets obtained from GEO were carried out firstly. Then four machine algorithms were used to screen candidate biomarkers. The diagnostic model was constructed based on key genes, and the accuracy was verified by ROC curve, calibration curve and decision curve. Finally, the CIBERSORT algorithm was used to explore immune cell infiltration in OSA.</p><p><strong>Results: </strong>There were 32 important genes that were considered to be related both in OSA and DM datasets by differentially expressed analysis. Through enrichment analysis, the majority of these genes are enriched in immunological regulation, oxidative stress response, and nervous system control. When consensus characteristics from all four approaches were used to predict OSA diagnosis, STK17A was thought to have a high degree of accuracy. In addition, the diagnostic model demonstrated strong performance and predictive value. Finally, we explored the immune cells signatures of OSA, and STK17A was strongly linked to invasive immune cells.</p><p><strong>Conclusion: </strong>STK17A has been discovered as a gene that can differentiate between individuals with OSA and DM based on four machine learning methods. In addition to offering possible treatment targets for DM-induced OSA, this diagnostic approach can identify high-risk DM patients who also have OSA.</p>","PeriodicalId":21862,"journal":{"name":"Sleep and Breathing","volume":"29 1","pages":"74"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729194/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sleep and Breathing","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11325-024-03240-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The pathophysiology of obstructive sleep apnea (OSA) and diabetes mellitus (DM) is still unknown, despite clinical reports linking the two conditions. After investigating potential roles for DM-related genes in the pathophysiology of OSA, our goal is to investigate the molecular significance of the condition. Machine learning is a useful approach to understanding complex gene expression data to find biomarkers for the diagnosis of OSA.
Methods: Differentially expressed analysis for OSA and DM data sets obtained from GEO were carried out firstly. Then four machine algorithms were used to screen candidate biomarkers. The diagnostic model was constructed based on key genes, and the accuracy was verified by ROC curve, calibration curve and decision curve. Finally, the CIBERSORT algorithm was used to explore immune cell infiltration in OSA.
Results: There were 32 important genes that were considered to be related both in OSA and DM datasets by differentially expressed analysis. Through enrichment analysis, the majority of these genes are enriched in immunological regulation, oxidative stress response, and nervous system control. When consensus characteristics from all four approaches were used to predict OSA diagnosis, STK17A was thought to have a high degree of accuracy. In addition, the diagnostic model demonstrated strong performance and predictive value. Finally, we explored the immune cells signatures of OSA, and STK17A was strongly linked to invasive immune cells.
Conclusion: STK17A has been discovered as a gene that can differentiate between individuals with OSA and DM based on four machine learning methods. In addition to offering possible treatment targets for DM-induced OSA, this diagnostic approach can identify high-risk DM patients who also have OSA.
期刊介绍:
The journal Sleep and Breathing aims to reflect the state of the art in the international science and practice of sleep medicine. The journal is based on the recognition that management of sleep disorders requires a multi-disciplinary approach and diverse perspectives. The initial focus of Sleep and Breathing is on timely and original studies that collect, intervene, or otherwise inform all clinicians and scientists in medicine, dentistry and oral surgery, otolaryngology, and epidemiology on the management of the upper airway during sleep.
Furthermore, Sleep and Breathing endeavors to bring readers cutting edge information about all evolving aspects of common sleep disorders or disruptions, such as insomnia and shift work. The journal includes not only patient studies, but also studies that emphasize the principles of physiology and pathophysiology or illustrate potentially novel approaches to diagnosis and treatment. In addition, the journal features articles that describe patient-oriented and cost-benefit health outcomes research. Thus, with peer review by an international Editorial Board and prompt English-language publication, Sleep and Breathing provides rapid dissemination of clinical and clinically related scientific information. But it also does more: it is dedicated to making the most important developments in sleep disordered breathing easily accessible to clinicians who are treating sleep apnea by presenting well-chosen, well-written, and highly organized information that is useful for patient care.