{"title":"Detection of sleep apnea using only inertial measurement unit signals from apple watch: a pilot-study with machine learning approach.","authors":"Junichiro Hayano, Mine Adachi, Yutaka Murakami, Fumihiko Sasaki, Emi Yuda","doi":"10.1007/s11325-025-03255-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Despite increased awareness of sleep hygiene, over 80% of sleep apnea cases remain undiagnosed, underscoring the need for accessible screening methods. This study presents a method for detecting sleep apnea using data from the Apple Watch's inertial measurement unit (IMU).</p><p><strong>Methods: </strong>An algorithm was developed to extract seismocardiographic and respiratory signals from IMU data, analyzing features such as breathing and heart rate variability, respiratory dips, and body movements. In a cohort of 61 adults undergoing polysomnography, we analyzed 52,337 30-second epochs, with 12,373 (23.6%) identified as apnea/hypopnea episodes. Machine learning models using five classifiers (Logistic Regression, Random Forest, Gradient Boosting, k-Nearest Neighbors, and Multi-layer Perceptron) were trained on data from 41 subjects and validated on 20 subjects.</p><p><strong>Results: </strong>The Random Forest classifier performed best in per-epoch respiratory event detection, achieving an AUC of 0.827 and an F1 score of 0.572 in the training group, and an AUC of 0.831 and an F1 score of 0.602 in the test group. The model's per-subject predictions strongly correlated with the apnea-hypopnea index (AHI) from polysomnography (r = 0.93) and identified subjects with AHI ≥ 15 with 100% sensitivity and 90% specificity.</p><p><strong>Conclusion: </strong>Utilizing the widespread availability of the Apple Watch and the low power requirements of the IMU, this approach has the potential to significantly improve sleep apnea screening accessibility.</p>","PeriodicalId":21862,"journal":{"name":"Sleep and Breathing","volume":"29 1","pages":"91"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11787281/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sleep and Breathing","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11325-025-03255-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Despite increased awareness of sleep hygiene, over 80% of sleep apnea cases remain undiagnosed, underscoring the need for accessible screening methods. This study presents a method for detecting sleep apnea using data from the Apple Watch's inertial measurement unit (IMU).
Methods: An algorithm was developed to extract seismocardiographic and respiratory signals from IMU data, analyzing features such as breathing and heart rate variability, respiratory dips, and body movements. In a cohort of 61 adults undergoing polysomnography, we analyzed 52,337 30-second epochs, with 12,373 (23.6%) identified as apnea/hypopnea episodes. Machine learning models using five classifiers (Logistic Regression, Random Forest, Gradient Boosting, k-Nearest Neighbors, and Multi-layer Perceptron) were trained on data from 41 subjects and validated on 20 subjects.
Results: The Random Forest classifier performed best in per-epoch respiratory event detection, achieving an AUC of 0.827 and an F1 score of 0.572 in the training group, and an AUC of 0.831 and an F1 score of 0.602 in the test group. The model's per-subject predictions strongly correlated with the apnea-hypopnea index (AHI) from polysomnography (r = 0.93) and identified subjects with AHI ≥ 15 with 100% sensitivity and 90% specificity.
Conclusion: Utilizing the widespread availability of the Apple Watch and the low power requirements of the IMU, this approach has the potential to significantly improve sleep apnea screening accessibility.
期刊介绍:
The journal Sleep and Breathing aims to reflect the state of the art in the international science and practice of sleep medicine. The journal is based on the recognition that management of sleep disorders requires a multi-disciplinary approach and diverse perspectives. The initial focus of Sleep and Breathing is on timely and original studies that collect, intervene, or otherwise inform all clinicians and scientists in medicine, dentistry and oral surgery, otolaryngology, and epidemiology on the management of the upper airway during sleep.
Furthermore, Sleep and Breathing endeavors to bring readers cutting edge information about all evolving aspects of common sleep disorders or disruptions, such as insomnia and shift work. The journal includes not only patient studies, but also studies that emphasize the principles of physiology and pathophysiology or illustrate potentially novel approaches to diagnosis and treatment. In addition, the journal features articles that describe patient-oriented and cost-benefit health outcomes research. Thus, with peer review by an international Editorial Board and prompt English-language publication, Sleep and Breathing provides rapid dissemination of clinical and clinically related scientific information. But it also does more: it is dedicated to making the most important developments in sleep disordered breathing easily accessible to clinicians who are treating sleep apnea by presenting well-chosen, well-written, and highly organized information that is useful for patient care.