Amina Saleem , Mingyu Wei , Muhammad Khawar Abbas , Siyao Zhang , Jiaqi Fan , Yang Xian , Hongfeng Jiang
{"title":"Generation of a PDK-1 knockout human embryonic stem cell line by CRISPR/(WAe009-A-2K) Cas9 editing","authors":"Amina Saleem , Mingyu Wei , Muhammad Khawar Abbas , Siyao Zhang , Jiaqi Fan , Yang Xian , Hongfeng Jiang","doi":"10.1016/j.scr.2024.103642","DOIUrl":null,"url":null,"abstract":"<div><div>Pyruvate Dehydrogenase Kinase1 (PDK1) belongs to the family of kinases, regulates diverse metabolic processes. PDK1 is a susceptibility locus for heart failure via thinning of ventricle walls, and enlarged atria and ventricles. We successfully developed a PDK1 knockout (PDK1<sup>−</sup>/<sup>−</sup>) human embryonic stem cell (hESC) line using an episomal vector-based CRISPR/Cas9 system explore the role of PDK in human heart development. This PDK1-KO hESC line-maintained stem cell-like morphology, pluripotency, and normal karyotype and can differentiate into all three germ layers in vivo. This cell line will be a valuable tool for future research on the role of PDK1 in heart development.</div></div>","PeriodicalId":21843,"journal":{"name":"Stem cell research","volume":"83 ","pages":"Article 103642"},"PeriodicalIF":0.8000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem cell research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1873506124003404","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pyruvate Dehydrogenase Kinase1 (PDK1) belongs to the family of kinases, regulates diverse metabolic processes. PDK1 is a susceptibility locus for heart failure via thinning of ventricle walls, and enlarged atria and ventricles. We successfully developed a PDK1 knockout (PDK1−/−) human embryonic stem cell (hESC) line using an episomal vector-based CRISPR/Cas9 system explore the role of PDK in human heart development. This PDK1-KO hESC line-maintained stem cell-like morphology, pluripotency, and normal karyotype and can differentiate into all three germ layers in vivo. This cell line will be a valuable tool for future research on the role of PDK1 in heart development.
期刊介绍:
Stem Cell Research is dedicated to publishing high-quality manuscripts focusing on the biology and applications of stem cell research. Submissions to Stem Cell Research, may cover all aspects of stem cells, including embryonic stem cells, tissue-specific stem cells, cancer stem cells, developmental studies, stem cell genomes, and translational research. Stem Cell Research publishes 6 issues a year.