Characterization and genomic insights into bacteriophages Kpph1 and Kpph9 against hypervirulent carbapenem-resistant Klebsiella pneumoniae.

IF 5.5 1区 农林科学 Q1 IMMUNOLOGY Virulence Pub Date : 2025-12-01 Epub Date: 2025-01-13 DOI:10.1080/21505594.2025.2450462
Ye Huang, Yuan Huang, Zhiping Wu, Ziyue Fan, Fanglin Zheng, Yang Liu, Xinping Xu
{"title":"Characterization and genomic insights into bacteriophages Kpph1 and Kpph9 against hypervirulent carbapenem-resistant <i>Klebsiella pneumoniae</i>.","authors":"Ye Huang, Yuan Huang, Zhiping Wu, Ziyue Fan, Fanglin Zheng, Yang Liu, Xinping Xu","doi":"10.1080/21505594.2025.2450462","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing incidence of infections attributed to hypervirulent carbapenem-resistant <i>Klebsiella pneumoniae</i> (Hv-CRKp) is of considerable concern. Bacteriophages, also known as phages, are viruses that specifically infect bacteria; thus, phage-based therapies offer promising alternatives to antibiotic treatments targeting Hv-CRKp infections. In this study, two isolated bacteriophages, Kpph1 and Kpph9, were characterized for their specificity against the Hv-CRKp <i>K. pneumoniae</i> NUHL30457 strain that possesses a K2 capsule serotype. Both phages exhibit remarkable environmental tolerance, displaying stability over a range of pH values (4-11) and temperatures (up to 50°C). The phages demonstrate potent antibacterial and antibiofilm efficacy, as indicated by their capacity to inhibit biofilm formation and to disrupt established biofilms of Hv-CRKp. Through phylogenetic analysis, it has been revealed that Kpph1 belongs to the new species of <i>Webervirus</i> genus, and Kpph9 to the <i>Drulisvirus</i> genus. Comparative genomic analysis suggests that the tail fiber protein region exhibits the greatest diversity in the genomes of phages within the same genus, which implies distinct co-evolution histories between phages and their corresponding hosts. Interestingly, both phages have been found to contain two tail fiber proteins that may exhibit potential depolymerase activities. However, the exact role of depolymerase in the interaction between phages and their hosts warrants further investigation. In summary, our findings emphasize the therapeutic promise of phages Kpph1 and Kpph9, as well as their encoded proteins, in the context of research on phage therapy targeting hypervirulent carbapenem-resistant <i>Klebsiella pneumoniae</i>.</p>","PeriodicalId":23747,"journal":{"name":"Virulence","volume":"16 1","pages":"2450462"},"PeriodicalIF":5.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730680/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virulence","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/21505594.2025.2450462","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing incidence of infections attributed to hypervirulent carbapenem-resistant Klebsiella pneumoniae (Hv-CRKp) is of considerable concern. Bacteriophages, also known as phages, are viruses that specifically infect bacteria; thus, phage-based therapies offer promising alternatives to antibiotic treatments targeting Hv-CRKp infections. In this study, two isolated bacteriophages, Kpph1 and Kpph9, were characterized for their specificity against the Hv-CRKp K. pneumoniae NUHL30457 strain that possesses a K2 capsule serotype. Both phages exhibit remarkable environmental tolerance, displaying stability over a range of pH values (4-11) and temperatures (up to 50°C). The phages demonstrate potent antibacterial and antibiofilm efficacy, as indicated by their capacity to inhibit biofilm formation and to disrupt established biofilms of Hv-CRKp. Through phylogenetic analysis, it has been revealed that Kpph1 belongs to the new species of Webervirus genus, and Kpph9 to the Drulisvirus genus. Comparative genomic analysis suggests that the tail fiber protein region exhibits the greatest diversity in the genomes of phages within the same genus, which implies distinct co-evolution histories between phages and their corresponding hosts. Interestingly, both phages have been found to contain two tail fiber proteins that may exhibit potential depolymerase activities. However, the exact role of depolymerase in the interaction between phages and their hosts warrants further investigation. In summary, our findings emphasize the therapeutic promise of phages Kpph1 and Kpph9, as well as their encoded proteins, in the context of research on phage therapy targeting hypervirulent carbapenem-resistant Klebsiella pneumoniae.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
噬菌体Kpph1和Kpph9抗高毒力耐碳青霉烯肺炎克雷伯菌的鉴定和基因组学见解。
高毒力耐碳青霉烯肺炎克雷伯菌(Hv-CRKp)感染发生率的增加引起了相当大的关注。噬菌体,也被称为噬菌体,是专门感染细菌的病毒;因此,基于噬菌体的治疗为针对Hv-CRKp感染的抗生素治疗提供了有希望的替代方案。在这项研究中,两个分离的噬菌体Kpph1和Kpph9对具有K2胶囊血清型的Hv-CRKp肺炎克雷伯菌NUHL30457株具有特异性。这两种噬菌体都表现出卓越的环境耐受性,在pH值(4-11)和温度(高达50°C)范围内表现出稳定性。噬菌体表现出强大的抗菌和抗生物膜功效,这表明它们能够抑制生物膜的形成并破坏已建立的Hv-CRKp生物膜。通过系统发育分析,发现Kpph1属webvirus属新种,Kpph9属Drulisvirus属。比较基因组分析表明,在同一属的噬菌体基因组中,尾纤维蛋白区表现出最大的多样性,这意味着噬菌体与其相应宿主之间存在不同的共同进化历史。有趣的是,这两种噬菌体都含有两种尾部纤维蛋白,可能表现出潜在的解聚合酶活性。然而,解聚合酶在噬菌体与宿主相互作用中的确切作用有待进一步研究。总之,我们的研究结果强调了噬菌体Kpph1和Kpph9及其编码蛋白在针对高毒力碳青霉烯耐药肺炎克雷伯菌的噬菌体治疗研究中的治疗前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Virulence
Virulence IMMUNOLOGY-MICROBIOLOGY
CiteScore
9.20
自引率
1.90%
发文量
123
审稿时长
6-12 weeks
期刊介绍: Virulence is a fully open access peer-reviewed journal. All articles will (if accepted) be available for anyone to read anywhere, at any time immediately on publication. Virulence is the first international peer-reviewed journal of its kind to focus exclusively on microbial pathogenicity, the infection process and host-pathogen interactions. To address the new infectious challenges, emerging infectious agents and antimicrobial resistance, there is a clear need for interdisciplinary research.
期刊最新文献
Human macrophage response to the emerging enteric pathogen Aeromonas veronii: Inflammation, apoptosis, and downregulation of histones. Emerging West African Genotype Chikungunya Virus in Mosquito Virome. Are Escherichia coli causing recurrent cystitis just ordinary uropathogenic E. coli (UPEC) strains? Arginine depletion-induced autophagy and metabolic dysregulation are involved in the disease severity of hand, foot, and mouth disease. Effect of COVID-19 infection on thyroid function status and clinical indexes among hypothyroid outpatients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1