How to Run Linear Mixed Effects Analysis for Pairwise Comparisons? A Tutorial and a Proposal for the Calculation of Standardized Effect Sizes.

Q1 Psychology Journal of Cognition Pub Date : 2025-01-06 eCollection Date: 2025-01-01 DOI:10.5334/joc.409
Marc Brysbaert, Dries Debeer
{"title":"How to Run Linear Mixed Effects Analysis for Pairwise Comparisons? A Tutorial and a Proposal for the Calculation of Standardized Effect Sizes.","authors":"Marc Brysbaert, Dries Debeer","doi":"10.5334/joc.409","DOIUrl":null,"url":null,"abstract":"<p><p>This tutorial provides guidelines for conducting linear mixed effects (LME) analyses for simple designs, aimed at researchers familiar with t-tests, analysis of variance (ANOVA) and linear regression. First, we compare LME analyses with traditional methods when participants are the only source of random variation. We show that LME analysis is more interesting as soon as you have more than one observation per participant per condition. The second section discusses studies where both participants and stimuli are used as sources of random variation, ensuring robust generalization beyond the specific stimuli tested. In our search for standardized effect sizes, we saw that partial eta squared is even less informative for LME than for ANOVA. We present <i>eta squared within</i> as an alternative, to be used in combination with the traditional measure eta squared (also in ANOVA). To facilitate implementation, we analyze toy datasets with R and jamovi. This tutorial gives researchers a good foundation for LME analyses of simple 2 × 2 designs and paves the way for tackling more complicated designs.</p>","PeriodicalId":32728,"journal":{"name":"Journal of Cognition","volume":"8 1","pages":"5"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11720698/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5334/joc.409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Psychology","Score":null,"Total":0}
引用次数: 0

Abstract

This tutorial provides guidelines for conducting linear mixed effects (LME) analyses for simple designs, aimed at researchers familiar with t-tests, analysis of variance (ANOVA) and linear regression. First, we compare LME analyses with traditional methods when participants are the only source of random variation. We show that LME analysis is more interesting as soon as you have more than one observation per participant per condition. The second section discusses studies where both participants and stimuli are used as sources of random variation, ensuring robust generalization beyond the specific stimuli tested. In our search for standardized effect sizes, we saw that partial eta squared is even less informative for LME than for ANOVA. We present eta squared within as an alternative, to be used in combination with the traditional measure eta squared (also in ANOVA). To facilitate implementation, we analyze toy datasets with R and jamovi. This tutorial gives researchers a good foundation for LME analyses of simple 2 × 2 designs and paves the way for tackling more complicated designs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
如何进行两两比较的线性混合效应分析?计算标准化效应量的教程和建议。
本教程针对熟悉t检验、方差分析(ANOVA)和线性回归的研究人员,提供了对简单设计进行线性混合效应(LME)分析的指南。首先,当参与者是随机变异的唯一来源时,我们将LME分析与传统方法进行比较。我们表明,只要每个参与者在每种情况下有不止一个观察结果,LME分析就会更有趣。第二部分讨论了参与者和刺激都被用作随机变化来源的研究,以确保超越特定刺激测试的鲁棒泛化。在我们对标准化效应大小的搜索中,我们看到偏eta平方对LME的信息量甚至比方差分析更少。我们提出内平方作为一种替代方法,与传统的测量平方(也在方差分析中)结合使用。为了便于实现,我们使用R和jamovi分析玩具数据集。本教程为研究人员提供了简单2x2设计的LME分析的良好基础,并为处理更复杂的设计铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Cognition
Journal of Cognition Psychology-Experimental and Cognitive Psychology
CiteScore
4.50
自引率
0.00%
发文量
43
审稿时长
6 weeks
期刊最新文献
Long-term Contingency Learning Depends on Contingency Awareness. I am Once Again Asking for Your Attention: A Replication of Feature-Based Attention Modulations of Binding Effects with Picture Stimuli. Implicit Learning of Parity and Magnitude Associations with Number Color. Exploring Inhibitory Control Processes in Highly Superior Autobiographical Memory (HSAM): A Single Case Study. Readiness for Perception and Action: Towards a More Mechanistic Understanding of Phasic Alertness.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1