Mapping Mental Representations With Free Associations: A Tutorial Using the R Package associatoR.

Q1 Psychology Journal of Cognition Pub Date : 2025-01-06 eCollection Date: 2025-01-01 DOI:10.5334/joc.407
Samuel Aeschbach, Rui Mata, Dirk U Wulff
{"title":"Mapping Mental Representations With Free Associations: A Tutorial Using the R Package associatoR.","authors":"Samuel Aeschbach, Rui Mata, Dirk U Wulff","doi":"10.5334/joc.407","DOIUrl":null,"url":null,"abstract":"<p><p>People's understanding of topics and concepts such as risk, sustainability, and intelligence can be important for psychological researchers and policymakers alike. One underexplored way of accessing this information is to use free associations to map people's mental representations. In this tutorial, we describe how free association responses can be collected, processed, mapped, and compared across groups using the R package <i>associatoR</i>. We discuss study design choices and different approaches to uncovering the structure of mental representations using natural language processing, including the use of embeddings from large language models. We posit that free association analysis presents a powerful approach to revealing how people and machines represent key social and technological issues.</p>","PeriodicalId":32728,"journal":{"name":"Journal of Cognition","volume":"8 1","pages":"3"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11720478/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5334/joc.407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Psychology","Score":null,"Total":0}
引用次数: 0

Abstract

People's understanding of topics and concepts such as risk, sustainability, and intelligence can be important for psychological researchers and policymakers alike. One underexplored way of accessing this information is to use free associations to map people's mental representations. In this tutorial, we describe how free association responses can be collected, processed, mapped, and compared across groups using the R package associatoR. We discuss study design choices and different approaches to uncovering the structure of mental representations using natural language processing, including the use of embeddings from large language models. We posit that free association analysis presents a powerful approach to revealing how people and machines represent key social and technological issues.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用自由关联映射心理表征:使用R包关联器的教程。
人们对风险、可持续性和智力等主题和概念的理解对心理学研究人员和决策者都很重要。一种未被充分探索的获取这些信息的方法是使用自由联想来绘制人们的心理表征。在本教程中,我们将描述如何使用R包associatoR在组之间收集、处理、映射和比较自由关联响应。我们讨论了研究设计选择和使用自然语言处理揭示心理表征结构的不同方法,包括使用来自大型语言模型的嵌入。我们认为,自由联想分析提供了一种强有力的方法来揭示人和机器如何代表关键的社会和技术问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Cognition
Journal of Cognition Psychology-Experimental and Cognitive Psychology
CiteScore
4.50
自引率
0.00%
发文量
43
审稿时长
6 weeks
期刊最新文献
Long-term Contingency Learning Depends on Contingency Awareness. I am Once Again Asking for Your Attention: A Replication of Feature-Based Attention Modulations of Binding Effects with Picture Stimuli. Implicit Learning of Parity and Magnitude Associations with Number Color. Exploring Inhibitory Control Processes in Highly Superior Autobiographical Memory (HSAM): A Single Case Study. Readiness for Perception and Action: Towards a More Mechanistic Understanding of Phasic Alertness.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1