Jordan Beveridge, Allison Montgomery, George Grossberg
{"title":"Intermittent fasting and neurocognitive disorders: What the evidence shows.","authors":"Jordan Beveridge, Allison Montgomery, George Grossberg","doi":"10.1016/j.jnha.2025.100480","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Intermittent fasting (IF) has emerged as a potential lifestyle intervention for mitigating cognitive decline and enhancing brain health in individuals with mild to major neurocognitive disorders. Unlike preventive strategies, this review evaluates IF as a therapeutic approach, focusing on its effects on neuroplasticity, inflammation, and cognitive function.</p><p><strong>Methods: </strong>A narrative review was conducted using a comprehensive PubMed search with the terms \"intermittent fasting AND neurocognition\" and \"intermittent fasting AND neuroplasticity\". Studies published in English within the last ten years involving human and animal models were included. Exclusion criteria focused on studies primarily examining mood disorders or unrelated metabolic outcomes.</p><p><strong>Results: </strong>Preclinical evidence demonstrates that IF enhances hippocampal neurogenesis and synaptic plasticity through pathways involving BDNF and CREB. IF also reduces neuroinflammation, as shown in animal models of Alzheimer's disease, vascular cognitive impairment, and high-fat diet-induced cognitive impairment. Human studies, though limited, suggest that regular IF may improve cognitive function and reduce markers of oxidative stress and inflammation in individuals with mild cognitive impairment.</p><p><strong>Conclusion: </strong>Current findings highlight the therapeutic potential of IF for individuals with existing cognitive impairment. While preclinical studies provide robust evidence of neuroprotective mechanisms, human studies remain sparse and require standardization. Further clinical research is necessary to confirm long-term safety and efficacy and to refine IF protocols for broader clinical application.</p>","PeriodicalId":54778,"journal":{"name":"Journal of Nutrition Health & Aging","volume":"29 4","pages":"100480"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nutrition Health & Aging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jnha.2025.100480","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Intermittent fasting (IF) has emerged as a potential lifestyle intervention for mitigating cognitive decline and enhancing brain health in individuals with mild to major neurocognitive disorders. Unlike preventive strategies, this review evaluates IF as a therapeutic approach, focusing on its effects on neuroplasticity, inflammation, and cognitive function.
Methods: A narrative review was conducted using a comprehensive PubMed search with the terms "intermittent fasting AND neurocognition" and "intermittent fasting AND neuroplasticity". Studies published in English within the last ten years involving human and animal models were included. Exclusion criteria focused on studies primarily examining mood disorders or unrelated metabolic outcomes.
Results: Preclinical evidence demonstrates that IF enhances hippocampal neurogenesis and synaptic plasticity through pathways involving BDNF and CREB. IF also reduces neuroinflammation, as shown in animal models of Alzheimer's disease, vascular cognitive impairment, and high-fat diet-induced cognitive impairment. Human studies, though limited, suggest that regular IF may improve cognitive function and reduce markers of oxidative stress and inflammation in individuals with mild cognitive impairment.
Conclusion: Current findings highlight the therapeutic potential of IF for individuals with existing cognitive impairment. While preclinical studies provide robust evidence of neuroprotective mechanisms, human studies remain sparse and require standardization. Further clinical research is necessary to confirm long-term safety and efficacy and to refine IF protocols for broader clinical application.
期刊介绍:
There is increasing scientific and clinical interest in the interactions of nutrition and health as part of the aging process. This interest is due to the important role that nutrition plays throughout the life span. This role affects the growth and development of the body during childhood, affects the risk of acute and chronic diseases, the maintenance of physiological processes and the biological process of aging. A major aim of "The Journal of Nutrition, Health & Aging" is to contribute to the improvement of knowledge regarding the relationships between nutrition and the aging process from birth to old age.