{"title":"The maize mTERF18 regulates transcriptional termination of the mitochondrial nad6 gene and is essential for kernel development.","authors":"Zhengwei Guan, Yong Wang, Jun Yang","doi":"10.1016/j.jgg.2025.01.001","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondria are semi-autonomous organelles present in eukaryotic cells, containing their own genome and transcriptional machinery. However, their functions are intricately linked to proteins encoded by the nuclear genome. Mitochondrial transcription termination factors (mTERFs) are nucleic acid-binding proteins involved in RNA splicing and transcription termination within plant mitochondria and chloroplasts. Despite their recognized importance, the specific roles of mTERF proteins in maize remain largely unexplored. Here, we clone and functionally characterize the maize mTERF18 gene. Our findings reveal that mTERF18 mutations lead to severely undifferentiated embryos, resulting in abortive phenotypes. Early kernel exhibits abnormal basal endosperm transfer layer and a significant reduction in both starch and protein accumulation in mterf18. We identify the mTERF18 gene through mapping-based cloning and validate this gene through allelic tests. mTERF18 is widely expressed across various maize tissues and encodes a highly conserved mitochondrial protein. Transcriptome data reveal that mTERF18 mutations disrupt transcriptional termination of the nad6 gene, leading to undetectable levels of Nad6 protein and reduced complex I assembly and activity. Furthermore, transmission electron microscopy observation of mterf18 endosperm uncover severe mitochondrial defects. Collectively, these findings highlight the critical role of mTERF18 in mitochondrial gene transcription termination and its pivotal impact on maize kernel development.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Genetics and Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jgg.2025.01.001","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mitochondria are semi-autonomous organelles present in eukaryotic cells, containing their own genome and transcriptional machinery. However, their functions are intricately linked to proteins encoded by the nuclear genome. Mitochondrial transcription termination factors (mTERFs) are nucleic acid-binding proteins involved in RNA splicing and transcription termination within plant mitochondria and chloroplasts. Despite their recognized importance, the specific roles of mTERF proteins in maize remain largely unexplored. Here, we clone and functionally characterize the maize mTERF18 gene. Our findings reveal that mTERF18 mutations lead to severely undifferentiated embryos, resulting in abortive phenotypes. Early kernel exhibits abnormal basal endosperm transfer layer and a significant reduction in both starch and protein accumulation in mterf18. We identify the mTERF18 gene through mapping-based cloning and validate this gene through allelic tests. mTERF18 is widely expressed across various maize tissues and encodes a highly conserved mitochondrial protein. Transcriptome data reveal that mTERF18 mutations disrupt transcriptional termination of the nad6 gene, leading to undetectable levels of Nad6 protein and reduced complex I assembly and activity. Furthermore, transmission electron microscopy observation of mterf18 endosperm uncover severe mitochondrial defects. Collectively, these findings highlight the critical role of mTERF18 in mitochondrial gene transcription termination and its pivotal impact on maize kernel development.
期刊介绍:
The Journal of Genetics and Genomics (JGG, formerly known as Acta Genetica Sinica ) is an international journal publishing peer-reviewed articles of novel and significant discoveries in the fields of genetics and genomics. Topics of particular interest include but are not limited to molecular genetics, developmental genetics, cytogenetics, epigenetics, medical genetics, population and evolutionary genetics, genomics and functional genomics as well as bioinformatics and computational biology.