A Convolutional Neural Network Using Anterior Segment Photos for Infectious Keratitis Identification.

Clinical ophthalmology (Auckland, N.Z.) Pub Date : 2025-01-07 eCollection Date: 2025-01-01 DOI:10.2147/OPTH.S496552
Vannarut Satitpitakul, Apiwit Puangsricharern, Surachet Yuktiratna, Yossapon Jaisarn, Keeratika Sangsao, Vilavun Puangsricharern, Ngamjit Kasetsuwan, Usanee Reinprayoon, Thanachaporn Kittipibul
{"title":"A Convolutional Neural Network Using Anterior Segment Photos for Infectious Keratitis Identification.","authors":"Vannarut Satitpitakul, Apiwit Puangsricharern, Surachet Yuktiratna, Yossapon Jaisarn, Keeratika Sangsao, Vilavun Puangsricharern, Ngamjit Kasetsuwan, Usanee Reinprayoon, Thanachaporn Kittipibul","doi":"10.2147/OPTH.S496552","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To develop a comprehensively deep learning algorithm to differentiate between bacterial keratitis, fungal keratitis, non-infectious corneal lesions, and normal corneas.</p><p><strong>Methods: </strong>This retrospective study collected slit-lamp photos of patients with bacterial keratitis, fungal keratitis, non-infectious corneal lesions, and normal cornea. Causative organisms of infectious keratitis were identified by either positive culture or clinical response to single treatment. Convolutional neural networks (ResNet50, DenseNet121, VGG19) and Ensemble with probability weighting were used to develop a deep learning algorithm. The performance including accuracy, precision, recall, F1 score, specificity and AUC has been reported.</p><p><strong>Results: </strong>Total of 6478 photos from 2171 eyes, composed of 2400 bacterial keratitis, 1616 fungal keratitis, 1545 non-infectious corneal lesions, and 917 normal corneas were collected from hospital database. DenseNet121 demonstrated the best performance among three convolutional neural networks with the accuracy of 0.8 (95% CI 0.74-0.86). The ensemble technique showed higher performance than single algorithm with the accuracy of 0.83 (95% 0.78-0.88).</p><p><strong>Conclusion: </strong>Convolutional neural networks with ensemble techniques provided the best performance in discriminating bacterial keratitis, fungal keratitis, non-infectious corneal lesions, and normal corneas. Our models can be used as a screening tool for non-ophthalmic health care providers and ophthalmologists for rapid provisional diagnosis of infectious keratitis.</p>","PeriodicalId":93945,"journal":{"name":"Clinical ophthalmology (Auckland, N.Z.)","volume":"19 ","pages":"73-81"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11724627/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical ophthalmology (Auckland, N.Z.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/OPTH.S496552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: To develop a comprehensively deep learning algorithm to differentiate between bacterial keratitis, fungal keratitis, non-infectious corneal lesions, and normal corneas.

Methods: This retrospective study collected slit-lamp photos of patients with bacterial keratitis, fungal keratitis, non-infectious corneal lesions, and normal cornea. Causative organisms of infectious keratitis were identified by either positive culture or clinical response to single treatment. Convolutional neural networks (ResNet50, DenseNet121, VGG19) and Ensemble with probability weighting were used to develop a deep learning algorithm. The performance including accuracy, precision, recall, F1 score, specificity and AUC has been reported.

Results: Total of 6478 photos from 2171 eyes, composed of 2400 bacterial keratitis, 1616 fungal keratitis, 1545 non-infectious corneal lesions, and 917 normal corneas were collected from hospital database. DenseNet121 demonstrated the best performance among three convolutional neural networks with the accuracy of 0.8 (95% CI 0.74-0.86). The ensemble technique showed higher performance than single algorithm with the accuracy of 0.83 (95% 0.78-0.88).

Conclusion: Convolutional neural networks with ensemble techniques provided the best performance in discriminating bacterial keratitis, fungal keratitis, non-infectious corneal lesions, and normal corneas. Our models can be used as a screening tool for non-ophthalmic health care providers and ophthalmologists for rapid provisional diagnosis of infectious keratitis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于前段图像的卷积神经网络识别感染性角膜炎。
目的:开发一种区分细菌性角膜炎、真菌性角膜炎、非感染性角膜病变和正常角膜的综合深度学习算法。方法:回顾性收集细菌性角膜炎、真菌性角膜炎、非感染性角膜病变和正常角膜患者的裂隙灯照片。通过培养阳性或对单一治疗的临床反应来鉴定感染性角膜炎的致病微生物。使用卷积神经网络(ResNet50, DenseNet121, VGG19)和概率加权的Ensemble来开发深度学习算法。准确度、精密度、召回率、F1评分、特异性和AUC等指标均有报道。结果:从医院数据库中共收集到2171只眼的照片6478张,其中细菌性角膜炎2400张,真菌性角膜炎1616张,非感染性角膜病变1545张,正常角膜917张。DenseNet121在三个卷积神经网络中表现最好,准确率为0.8 (95% CI 0.74-0.86)。集成技术的准确率为0.83(95% 0.78 ~ 0.88),优于单一算法。结论:卷积神经网络集成技术对细菌性角膜炎、真菌性角膜炎、非感染性角膜病变和正常角膜的鉴别效果最好。我们的模型可以作为非眼科保健提供者和眼科医生快速临时诊断感染性角膜炎的筛查工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
0
期刊最新文献
Corneal Epithelial Thickness Mapping in Healthy Population Corneas Using MS-39 Anterior Segment Optical Coherence Tomography. Diagnostic Capability of Pattern Electroretinogram and Three Circumpapillary Retinal Nerve Fiber Layer Thickness Circle Diameter Scans in Glaucoma Suspects. The "Triangle" Sign: A Novel Ultrasound Marker for Diagnosing Total Choroidal Detachment and Total Suprachoroidal Hemorrhage. Correlating the Optical Coherence Tomography Patterns and Biomarkers of Diabetic Macular Edema with Hemoglobin Level in Diabetic Kidney Disease. Effects of Switching to Netarsudil/Latanoprost Fixed Dose Combination from Various Latanoprost Regimens: The Phase 4 MORE Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1