Nipa Khair , Sanchita Bhat , Sakhawat Hossan Robel , Srujana Joshi , Katie Vinterella , Lakshmi Dasi , Susan James
{"title":"Parametric finite element modeling of reinforced polymeric leaflets for improved durability","authors":"Nipa Khair , Sanchita Bhat , Sakhawat Hossan Robel , Srujana Joshi , Katie Vinterella , Lakshmi Dasi , Susan James","doi":"10.1016/j.jmbbm.2024.106884","DOIUrl":null,"url":null,"abstract":"<div><div>Hyaluronic acid-enhanced polyethylene polymeric TAVR shows excellent <em>in vivo</em> anti-calcific, anti-thrombotic, and <em>in vitro</em> hydrodynamic performance. However, during durability testing, impact wear and fatigue cause early valve failure. Heart valve durability can be improved by strengthening the leaflet with fiber reinforcement. A thin plastic sheet is assembled into a cylindrical form by welding two ends, which never fails during accelerated wear testing (ISO 5840-2005). The weld at the commissure post region of the leaflet (ROI) is mechanically stronger than the rest of the leaflet, which protects this region. Braided polyester fibers are embedded on the leaflet regions of the commissure post perpendicular to the valve circumference, mimicking the weld but at a much higher strength. Leaflet durability skyrockets from a few million cycles to 73 million and comparable hemodynamics performances. The entire cardiac cycle of the heart valve with embedded fibers of varying angles, lengths, and numbers is simulated in Finite Element Analysis (FEA) to study their effects on leaflet maximum principal stress and leaflet opening dynamics. Horizontal fibers wrap the leaflet 360° to relax the leaflet completely during peak diastolic. However, the leaflet has a higher coaptation gap and lower geometric orifice area (GOA). The heart valve with embedded horizontal fibers is physically manufactured and tested in an <em>in vitro</em> flow loop and wear tester, which shows improved durability but compromised hemodynamics. The parametric study further predicts that 12 mm long fibers covering only the commissure post region of the leaflet have low principal stress, maximum GOA, and fastest opening as the spring-like fibers help leaflet opening.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"163 ","pages":"Article 106884"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751616124005162","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Hyaluronic acid-enhanced polyethylene polymeric TAVR shows excellent in vivo anti-calcific, anti-thrombotic, and in vitro hydrodynamic performance. However, during durability testing, impact wear and fatigue cause early valve failure. Heart valve durability can be improved by strengthening the leaflet with fiber reinforcement. A thin plastic sheet is assembled into a cylindrical form by welding two ends, which never fails during accelerated wear testing (ISO 5840-2005). The weld at the commissure post region of the leaflet (ROI) is mechanically stronger than the rest of the leaflet, which protects this region. Braided polyester fibers are embedded on the leaflet regions of the commissure post perpendicular to the valve circumference, mimicking the weld but at a much higher strength. Leaflet durability skyrockets from a few million cycles to 73 million and comparable hemodynamics performances. The entire cardiac cycle of the heart valve with embedded fibers of varying angles, lengths, and numbers is simulated in Finite Element Analysis (FEA) to study their effects on leaflet maximum principal stress and leaflet opening dynamics. Horizontal fibers wrap the leaflet 360° to relax the leaflet completely during peak diastolic. However, the leaflet has a higher coaptation gap and lower geometric orifice area (GOA). The heart valve with embedded horizontal fibers is physically manufactured and tested in an in vitro flow loop and wear tester, which shows improved durability but compromised hemodynamics. The parametric study further predicts that 12 mm long fibers covering only the commissure post region of the leaflet have low principal stress, maximum GOA, and fastest opening as the spring-like fibers help leaflet opening.
期刊介绍:
The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials.
The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.