Bipolar and schizophrenia risk gene AKAP11 encodes an autophagy receptor coupling the regulation of PKA kinase network homeostasis to synaptic transmission.

You-Kyung Lee, Cong Xiao, Xiaoting Zhou, Le Wang, Meghan G McReynolds, Zhiping Wu, Eric Purisic, Henry Kim, Xianting Li, Zhiping P Pang, Jinye Dai, Junmin Peng, Nan Yang, Zhenyu Yue
{"title":"Bipolar and schizophrenia risk gene AKAP11 encodes an autophagy receptor coupling the regulation of PKA kinase network homeostasis to synaptic transmission.","authors":"You-Kyung Lee, Cong Xiao, Xiaoting Zhou, Le Wang, Meghan G McReynolds, Zhiping Wu, Eric Purisic, Henry Kim, Xianting Li, Zhiping P Pang, Jinye Dai, Junmin Peng, Nan Yang, Zhenyu Yue","doi":"10.1101/2024.12.30.630813","DOIUrl":null,"url":null,"abstract":"<p><p>Human genomic studies have identified protein-truncating variants in AKAP11 associated with both bipolar disorder and schizophrenia, implicating a shared disease mechanism driven by loss-of-function. AKAP11, a protein kinase A (PKA) adaptor, plays a key role in degrading the PKA-RI complex through selective autophagy. However, the neuronal functions of AKAP11 and the impact of its loss-of-function remains largely uncharacterized. Through multi-omics approaches, cell biology, and electrophysiology analysis in mouse models and human induced neurons, we delineated a central role of AKAP11 in coupling PKA kinase network regulation to synaptic transmission. Loss of AKAP11 disrupted PKA activity and impaired cellular functions that significantly overlap with pathways associated with the psychiatric disease. Moreover, we identified interactions between AKAP11, the PKA-RI adaptor SPHKAP, and the ER-resident autophagy-related proteins VAPA/B, which co-adapt and mediate PKA-RI degradation. Notably, AKAP11 deficiency impaired neurotransmission and decreased presynaptic protein levels in neurons, providing key insights into the mechanism underlying AKAP11-associated psychiatric diseases.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11722322/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.12.30.630813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Human genomic studies have identified protein-truncating variants in AKAP11 associated with both bipolar disorder and schizophrenia, implicating a shared disease mechanism driven by loss-of-function. AKAP11, a protein kinase A (PKA) adaptor, plays a key role in degrading the PKA-RI complex through selective autophagy. However, the neuronal functions of AKAP11 and the impact of its loss-of-function remains largely uncharacterized. Through multi-omics approaches, cell biology, and electrophysiology analysis in mouse models and human induced neurons, we delineated a central role of AKAP11 in coupling PKA kinase network regulation to synaptic transmission. Loss of AKAP11 disrupted PKA activity and impaired cellular functions that significantly overlap with pathways associated with the psychiatric disease. Moreover, we identified interactions between AKAP11, the PKA-RI adaptor SPHKAP, and the ER-resident autophagy-related proteins VAPA/B, which co-adapt and mediate PKA-RI degradation. Notably, AKAP11 deficiency impaired neurotransmission and decreased presynaptic protein levels in neurons, providing key insights into the mechanism underlying AKAP11-associated psychiatric diseases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双相情感障碍和精神分裂症风险基因AKAP11编码自噬受体偶联PKA激酶网络稳态调节突触传递。
人类基因组研究已经确定了AKAP11蛋白截断变异与双相情感障碍和精神分裂症相关,暗示了由功能丧失驱动的共同疾病机制。AKAP11是一种蛋白激酶a (PKA)适配器,在通过选择性自噬降解PKA- ri复合体中起关键作用。然而,AKAP11的神经元功能及其功能丧失的影响在很大程度上仍未被描述。通过多组学方法、细胞生物学和小鼠模型和人类诱导神经元的电生理学分析,我们描绘了AKAP11在将PKA激酶网络调节耦合到突触传递中的核心作用。AKAP11的缺失破坏了PKA活性,并损害了与精神疾病相关通路显著重叠的细胞功能。此外,我们还发现了AKAP11、PKA-RI适配器SPHKAP和er自噬相关蛋白VAPA/B之间的相互作用,它们共同适应和介导PKA-RI降解。值得注意的是,AKAP11缺乏会损害神经传递并降低神经元突触前蛋白水平,这为AKAP11相关精神疾病的潜在机制提供了关键见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
I/σI vs {Rmerg, Rmeas, Rpim, CC1/2} for Crystal Diffraction Data Quality Evaluation. Systems biology-enabled targeting of NF-κΒ and BCL2 overcomes microenvironment-mediated BH3-mimetic resistance in DLBCL. Tumor Cell Spatial Organization Directs EGFR/RAS/RAF Pathway Primary Therapy Resistance through YAP Signaling. CATSPERϵ extracellular domains are essential for sperm calcium channel assembly and activity modulation. Proteomic profiling of zinc homeostasis mechanisms in Pseudomonas aeruginosa through data-dependent and data-independent acquisition mass spectrometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1