Qingzhong Li, Tao Hu, Tianjiao Lu, Bo Yu, Yang Zhao
{"title":"Calcium-dependent protein kinases CPK3/4/6/11 and 27 respond to osmotic stress and activate SnRK2s in Arabidopsis","authors":"Qingzhong Li, Tao Hu, Tianjiao Lu, Bo Yu, Yang Zhao","doi":"10.1016/j.devcel.2024.12.036","DOIUrl":null,"url":null,"abstract":"Drought and salinity are significant environmental threats that cause hyperosmotic stress in plants, which respond with a transient elevation of cytosolic Ca<sup>2+</sup> and activation of Snf1-related protein kinase 2s (SnRK2s) and downstream responses. The exact regulators decoding Ca<sup>2+</sup> signals to activate downstream responses remained unclear. Here, we show that the calcium-dependent protein kinases CPK3/4/6/11 and 27 respond to moderate osmotic stress and dehydration to activate SnRK2 phosphorylation in <em>Arabidopsis</em>. Using quantitative phosphoproteomics in a higher-order mutant lacking 12 <em>pyrabactin resistance 1-like</em> (<em>PYL</em>) abscisic acid (ABA) receptors, we identified six CPKs that are phosphorylated under osmotic stress. CPK3/4/6/11/27 phosphorylate the SnRK2s on multiple phosphosites within the activation loop. The <em>cpk3/4/6/11/27</em> mutant is defective in SnRK2 activation, seed germination, and seedling growth under mild osmotic stress. Our findings elucidate the critical roles of CPK3/4/6/11/27 in decoding Ca<sup>2+</sup> signals to activate SnRK2s and demonstrate a CPK-SnRK2 kinase cascade controlling osmotic stress responses in plants.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"51 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.devcel.2024.12.036","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Drought and salinity are significant environmental threats that cause hyperosmotic stress in plants, which respond with a transient elevation of cytosolic Ca2+ and activation of Snf1-related protein kinase 2s (SnRK2s) and downstream responses. The exact regulators decoding Ca2+ signals to activate downstream responses remained unclear. Here, we show that the calcium-dependent protein kinases CPK3/4/6/11 and 27 respond to moderate osmotic stress and dehydration to activate SnRK2 phosphorylation in Arabidopsis. Using quantitative phosphoproteomics in a higher-order mutant lacking 12 pyrabactin resistance 1-like (PYL) abscisic acid (ABA) receptors, we identified six CPKs that are phosphorylated under osmotic stress. CPK3/4/6/11/27 phosphorylate the SnRK2s on multiple phosphosites within the activation loop. The cpk3/4/6/11/27 mutant is defective in SnRK2 activation, seed germination, and seedling growth under mild osmotic stress. Our findings elucidate the critical roles of CPK3/4/6/11/27 in decoding Ca2+ signals to activate SnRK2s and demonstrate a CPK-SnRK2 kinase cascade controlling osmotic stress responses in plants.
期刊介绍:
Developmental Cell, established in 2001, is a comprehensive journal that explores a wide range of topics in cell and developmental biology. Our publication encompasses work across various disciplines within biology, with a particular emphasis on investigating the intersections between cell biology, developmental biology, and other related fields. Our primary objective is to present research conducted through a cell biological perspective, addressing the essential mechanisms governing cell function, cellular interactions, and responses to the environment. Moreover, we focus on understanding the collective behavior of cells, culminating in the formation of tissues, organs, and whole organisms, while also investigating the consequences of any malfunctions in these intricate processes.