X-ray Photoelectron Spectroscopy Investigation of Iridium Oxide Catalyst Layers: Insights into the Catalyst-Ionomer Interface

IF 5.5 3区 材料科学 Q1 ELECTROCHEMISTRY Electrochimica Acta Pub Date : 2025-01-14 DOI:10.1016/j.electacta.2025.145705
Jayson Foster, Xiang Lyu, Alexey Serov, Scott Mauger, Elliot Padgett, Svitlana Pylypenko
{"title":"X-ray Photoelectron Spectroscopy Investigation of Iridium Oxide Catalyst Layers: Insights into the Catalyst-Ionomer Interface","authors":"Jayson Foster, Xiang Lyu, Alexey Serov, Scott Mauger, Elliot Padgett, Svitlana Pylypenko","doi":"10.1016/j.electacta.2025.145705","DOIUrl":null,"url":null,"abstract":"X-ray photoelectron spectroscopy (XPS) is a commonly used technique for investigating the surface properties and composition of catalysts used in polymer electrolyte membrane fuel cells and electrolyzers. XPS analysis of catalyst layers (CLs) is becoming increasingly utilized to provide greater understanding of CL properties and relationships between catalyst and support composition and structure, catalyst ink composition, CL fabrication methods and parameters, and their performance and durability. Characterization of Ir-based CLs is challenging due to several factors including interpretation of Ir 4f spectra, deconvolution of catalyst and ionomer species in O 1s spectra, and ionomer susceptibility to X-ray damage that leads to changes at the catalyst-ionomer interface often more significant than differences between samples. This study reports an approach for detailed XPS characterization of Ir-based CLs, establishes quantitative metrics and provides insights into the catalyst-ionomer interface that can be correlated to wide variety of processing and performance metrics. Specifically, we have evaluated surface compositional differences in CLs prepared with several common CL coating methods. We also investigated CLs prepared with different catalyst loadings and selected samples after electrochemical testing. In general, we found good agreements in trends observed from elemental ratios and those derived from detailed analysis of the O 1s spectra. Additionally, O 1s analysis revealed differences in the catalyst composition, addressing some of the challenges and limitations related to the interpretation of the Ir 4f spectra.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"7 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.electacta.2025.145705","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

X-ray photoelectron spectroscopy (XPS) is a commonly used technique for investigating the surface properties and composition of catalysts used in polymer electrolyte membrane fuel cells and electrolyzers. XPS analysis of catalyst layers (CLs) is becoming increasingly utilized to provide greater understanding of CL properties and relationships between catalyst and support composition and structure, catalyst ink composition, CL fabrication methods and parameters, and their performance and durability. Characterization of Ir-based CLs is challenging due to several factors including interpretation of Ir 4f spectra, deconvolution of catalyst and ionomer species in O 1s spectra, and ionomer susceptibility to X-ray damage that leads to changes at the catalyst-ionomer interface often more significant than differences between samples. This study reports an approach for detailed XPS characterization of Ir-based CLs, establishes quantitative metrics and provides insights into the catalyst-ionomer interface that can be correlated to wide variety of processing and performance metrics. Specifically, we have evaluated surface compositional differences in CLs prepared with several common CL coating methods. We also investigated CLs prepared with different catalyst loadings and selected samples after electrochemical testing. In general, we found good agreements in trends observed from elemental ratios and those derived from detailed analysis of the O 1s spectra. Additionally, O 1s analysis revealed differences in the catalyst composition, addressing some of the challenges and limitations related to the interpretation of the Ir 4f spectra.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
期刊最新文献
Prepared Hollow Nanosphere MoO2/rGO Composite for low concentration Dopamine Detection Study of Surface-Active Substances Using Alternating Current Voltammetry and Mercury Electrode by Potentiostat without Phase Sensitivity Modules Iron electrowinning from a nickel refinery residue for sustainable steelmaking Enhancing Ti/SnO2 electrodes for electrocatalytic performance: New insights for modifications EPR/UV–Vis–NIR spectroelectrochemical characterization of 10H-phenothiazinyl-substituted oligothiophenes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1