Radial Evolution of Interplanetary Shock Properties with Heliospheric Distance: Observations from Parker Solar Probe

Oksana Kruparova, Adam Szabo, Lan K. Jian, František Němec, Jana Šafránková, Zdeněk Němeček, Jacob Pasanen, Ayris Narock and Vratislav Krupar
{"title":"Radial Evolution of Interplanetary Shock Properties with Heliospheric Distance: Observations from Parker Solar Probe","authors":"Oksana Kruparova, Adam Szabo, Lan K. Jian, František Němec, Jana Šafránková, Zdeněk Němeček, Jacob Pasanen, Ayris Narock and Vratislav Krupar","doi":"10.3847/2041-8213/ada558","DOIUrl":null,"url":null,"abstract":"We present a comprehensive analysis of 66 interplanetary shocks observed by the Parker Solar Probe between 2018 November and 2024 January. Among these, 33 events fulfilled the Rankine–Hugoniot (R-H) conditions, ensuring reliable asymptotic plasma parameter solutions. The remaining 33 events could not be confirmed by the standard R-H approach—potentially including wave-like structures—yet were analyzed via averaging and mixed-data methods to obtain robust shock parameters. Utilizing our ShOck Detection Algorithm database, the shocks are categorized into fast-forward, fast-reverse, slow-forward, and slow-reverse types. We investigate the statistical properties of these shocks, focusing on correlations between key parameters—magnetic field compression, density compression, shock normal angle, and change in velocity—and heliocentric distance. Significant positive correlations are identified between heliocentric distance and both magnetic field compression and density compression, suggesting that shocks strengthen as they propagate away from the Sun, largely due to the high local magnetosonic speeds closer to the Sun that can suppress shock formation except in extremely fast events. These findings provide new insights into the dynamic processes governing shock evolution in the inner heliosphere, including scenarios where the near-radial magnetic field geometry may lead to predominantly quasi-parallel shock configurations and thus affect near-Sun particle acceleration efficiency. We also provide strong evidence for the existence of slow-mode shocks near the Sun, contributing to the understanding of shock formation and evolution in the inner heliosphere.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/ada558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a comprehensive analysis of 66 interplanetary shocks observed by the Parker Solar Probe between 2018 November and 2024 January. Among these, 33 events fulfilled the Rankine–Hugoniot (R-H) conditions, ensuring reliable asymptotic plasma parameter solutions. The remaining 33 events could not be confirmed by the standard R-H approach—potentially including wave-like structures—yet were analyzed via averaging and mixed-data methods to obtain robust shock parameters. Utilizing our ShOck Detection Algorithm database, the shocks are categorized into fast-forward, fast-reverse, slow-forward, and slow-reverse types. We investigate the statistical properties of these shocks, focusing on correlations between key parameters—magnetic field compression, density compression, shock normal angle, and change in velocity—and heliocentric distance. Significant positive correlations are identified between heliocentric distance and both magnetic field compression and density compression, suggesting that shocks strengthen as they propagate away from the Sun, largely due to the high local magnetosonic speeds closer to the Sun that can suppress shock formation except in extremely fast events. These findings provide new insights into the dynamic processes governing shock evolution in the inner heliosphere, including scenarios where the near-radial magnetic field geometry may lead to predominantly quasi-parallel shock configurations and thus affect near-Sun particle acceleration efficiency. We also provide strong evidence for the existence of slow-mode shocks near the Sun, contributing to the understanding of shock formation and evolution in the inner heliosphere.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随日球层距离的行星际激波特性的径向演化:帕克太阳探测器的观测
我们全面分析了帕克太阳探测器在 2018 年 11 月至 2024 年 1 月期间观测到的 66 次行星际冲击。其中,33 个事件符合兰金-胡戈尼奥特(R-H)条件,确保了可靠的渐近等离子体参数解。其余 33 个事件无法通过标准 R-H 方法确认--可能包括波状结构--但通过平均和混合数据方法进行了分析,以获得可靠的冲击参数。利用我们的 ShOck 检测算法数据库,冲击被分为快进、快退、慢进和慢退类型。我们研究了这些冲击的统计特性,重点是关键参数--磁场压缩、密度压缩、冲击法线角和速度变化--与日心距离之间的相关性。日心距离与磁场压缩和密度压缩之间存在显著的正相关关系,表明冲击在远离太阳的传播过程中会增强,这主要是由于靠近太阳的地方磁声速较高,除了在极快的事件中会抑制冲击的形成。这些发现为了解日光层内部冲击演化的动态过程提供了新的视角,包括近径向磁场的几何形状可能导致主要的准平行冲击构型,从而影响近太阳粒子加速效率的情况。我们还提供了太阳附近存在慢模冲击的有力证据,有助于理解内日光层中冲击的形成和演化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pearls on a String: Dark and Bright Galaxies on a Strikingly Straight and Narrow Filament The Bullseye: HST, Keck/KCWI, and Dragonfly Characterization of a Giant Nine-ringed Galaxy Solar Flares Triggered by a Filament Peeling Process Revealed by High-resolution GST Hα Observations Time-resolved Hubble Space Telescope UV Observations of an X-Ray Quasiperiodic Eruption Source X-Ray Dips and Polarization Angle Swings in GX 13+1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1