{"title":"Solar Flares Triggered by a Filament Peeling Process Revealed by High-resolution GST Hα Observations","authors":"Mia Mancuso, Ju Jing, Haimin Wang and Wenda Cao","doi":"10.3847/2041-8213/adad74","DOIUrl":null,"url":null,"abstract":"The dynamic structures of solar filaments prior to solar flares provide important physical clues about the onset of solar eruptions. Observations of those structures under subarcsecond resolution with high cadence are rare. We present high-resolution observations covering preeruptive and eruptive phases of two C-class solar flares, C5.1 (SOL2022-11-14T17:29) and C5.1 (SOL2022-11-14T19:29), obtained by the Goode Solar Telescope at Big Bear Solar Observatory. Both flares are ejective, i.e., accompanied by coronal mass ejections (CMEs). High-resolution Hα observations reveal details of the flares and some striking features, such as a filament peeling process: individual strands of thin flux tubes are separated from the main filament, followed shortly thereafter by a flare. The estimated flux of rising strands is in the order of 1017 Mx, versus the 1019 Mx of the entire filament. Our new finding may explain why photospheric magnetic fields and overall active region and filament structures as a whole do not have obvious changes after a flare, and why some CMEs have been traced back to the solar active regions with only nonerupting filaments, as the magnetic reconnection may only involve a very small amount of flux in the active region, requiring no significant filament eruptions. We suggest internal reconnection between filament threads, instead of reconnection to external loops, as the process responsible for triggering this peeling of threads that results in the two flares and their subsequent CMEs.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/adad74","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The dynamic structures of solar filaments prior to solar flares provide important physical clues about the onset of solar eruptions. Observations of those structures under subarcsecond resolution with high cadence are rare. We present high-resolution observations covering preeruptive and eruptive phases of two C-class solar flares, C5.1 (SOL2022-11-14T17:29) and C5.1 (SOL2022-11-14T19:29), obtained by the Goode Solar Telescope at Big Bear Solar Observatory. Both flares are ejective, i.e., accompanied by coronal mass ejections (CMEs). High-resolution Hα observations reveal details of the flares and some striking features, such as a filament peeling process: individual strands of thin flux tubes are separated from the main filament, followed shortly thereafter by a flare. The estimated flux of rising strands is in the order of 1017 Mx, versus the 1019 Mx of the entire filament. Our new finding may explain why photospheric magnetic fields and overall active region and filament structures as a whole do not have obvious changes after a flare, and why some CMEs have been traced back to the solar active regions with only nonerupting filaments, as the magnetic reconnection may only involve a very small amount of flux in the active region, requiring no significant filament eruptions. We suggest internal reconnection between filament threads, instead of reconnection to external loops, as the process responsible for triggering this peeling of threads that results in the two flares and their subsequent CMEs.