{"title":"Cosmic evolution of Bianchi III model within Born-Infeld f(R) gravity theory","authors":"Debika Kangsha Banik, Sebika Kangsha Banik, Kalyan Bhuyan","doi":"10.1007/s10714-024-03346-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we have put forwarded a detailed investigation on the cosmic evolution of Bianchi type III model within the realm of Born-Infeld <i>f</i>(<i>R</i>) gravity executing the Palatini approach. Using a very eminent tool known as Dynamical System Approach (DSA), we have curtailed the complexity of the non linear field equations and study the dynamics for the form <span>\\(f(R) =R-\\beta / R^n\\)</span>. The main focus of our work is to retrieve the sequence of cosmic evolution and to study the evolution of shear as well as spatial curvature.</p></div>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":"57 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Relativity and Gravitation","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10714-024-03346-1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we have put forwarded a detailed investigation on the cosmic evolution of Bianchi type III model within the realm of Born-Infeld f(R) gravity executing the Palatini approach. Using a very eminent tool known as Dynamical System Approach (DSA), we have curtailed the complexity of the non linear field equations and study the dynamics for the form \(f(R) =R-\beta / R^n\). The main focus of our work is to retrieve the sequence of cosmic evolution and to study the evolution of shear as well as spatial curvature.
期刊介绍:
General Relativity and Gravitation is a journal devoted to all aspects of modern gravitational science, and published under the auspices of the International Society on General Relativity and Gravitation.
It welcomes in particular original articles on the following topics of current research:
Analytical general relativity, including its interface with geometrical analysis
Numerical relativity
Theoretical and observational cosmology
Relativistic astrophysics
Gravitational waves: data analysis, astrophysical sources and detector science
Extensions of general relativity
Supergravity
Gravitational aspects of string theory and its extensions
Quantum gravity: canonical approaches, in particular loop quantum gravity, and path integral approaches, in particular spin foams, Regge calculus and dynamical triangulations
Quantum field theory in curved spacetime
Non-commutative geometry and gravitation
Experimental gravity, in particular tests of general relativity
The journal publishes articles on all theoretical and experimental aspects of modern general relativity and gravitation, as well as book reviews and historical articles of special interest.