{"title":"Elevated Temperature Diminishes Reciprocal Selection in an Experimental Plant‐Pollinator‐Herbivore System","authors":"Quint Rusman, Juan Traine, Florian P. Schiestl","doi":"10.1111/ele.70060","DOIUrl":null,"url":null,"abstract":"The geographic mosaic of coevolution predicts reciprocal selection, the first step in coevolution, to vary with changing biotic and abiotic environmental conditions. Studying how temperature affects reciprocal selection is essential to connect effects of global warming on the microevolutionary patterns of coevolution to the ecological processes underlying them. In this study, we investigated whether temperature influenced reciprocal selection between a plant (<jats:styled-content style=\"fixed-case\"><jats:italic>Brassica rapa</jats:italic></jats:styled-content>) and its pollinating butterfly herbivore (<jats:styled-content style=\"fixed-case\"><jats:italic>Pieris rapae</jats:italic></jats:styled-content>). In two temperature environments (ambient and hot), we measured the phenotypes of plants and butterflies, their interactions and fitness, which we used to calculate reciprocal selection. We found a variety of traits involved in reciprocal selection in the ambient environment, but none in the hot environment. We provide experimental evidence that elevated temperature weakens reciprocal selection, which will help better predict the consequences of global warming for coevolution.","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"51 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology Letters","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/ele.70060","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The geographic mosaic of coevolution predicts reciprocal selection, the first step in coevolution, to vary with changing biotic and abiotic environmental conditions. Studying how temperature affects reciprocal selection is essential to connect effects of global warming on the microevolutionary patterns of coevolution to the ecological processes underlying them. In this study, we investigated whether temperature influenced reciprocal selection between a plant (Brassica rapa) and its pollinating butterfly herbivore (Pieris rapae). In two temperature environments (ambient and hot), we measured the phenotypes of plants and butterflies, their interactions and fitness, which we used to calculate reciprocal selection. We found a variety of traits involved in reciprocal selection in the ambient environment, but none in the hot environment. We provide experimental evidence that elevated temperature weakens reciprocal selection, which will help better predict the consequences of global warming for coevolution.
期刊介绍:
Ecology Letters serves as a platform for the rapid publication of innovative research in ecology. It considers manuscripts across all taxa, biomes, and geographic regions, prioritizing papers that investigate clearly stated hypotheses. The journal publishes concise papers of high originality and general interest, contributing to new developments in ecology. Purely descriptive papers and those that only confirm or extend previous results are discouraged.