Polymerized Small-Molecule Acceptors with Linker Length-Dependent Photocatalytic Activity for High-Performance Solar Hydrogen Evolution

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2025-01-13 DOI:10.1002/adfm.202421994
Jingcheng Zhao, Yulu Liu, Ruiqi An, Yingying Fu, Panpan Wang, Xiaofu Wu, Hui Tong, Lixiang Wang
{"title":"Polymerized Small-Molecule Acceptors with Linker Length-Dependent Photocatalytic Activity for High-Performance Solar Hydrogen Evolution","authors":"Jingcheng Zhao, Yulu Liu, Ruiqi An, Yingying Fu, Panpan Wang, Xiaofu Wu, Hui Tong, Lixiang Wang","doi":"10.1002/adfm.202421994","DOIUrl":null,"url":null,"abstract":"Developing organic semiconductor photocatalysts with alterable optical properties and excitonic behaviors for photocatalytic hydrogen evolution has received significant attention recently. Herein, three polymerized small-molecule acceptors (PSMAs) with different linker lengths, namely PY-1T, PY-2T and PY-3T, are designed and synthesized to construct nano-photocatalysts. In comparison with small-molecule YDT, these PSMAs exhibit broader absorption in both visible and near-infrared (NIR) light region as well as enlarged exciton diffusion length. In the meanwhile, the intramolecular charge transfer and separation in PSMAs is promoted by varying the linker length, leading to enhanced light harvesting and charge utilization. As a result, the single-component nano-photocatalyst based on PY-3T achieves an impressive average hydrogen evolution rate (HER) of 400.3 mmol h<sup>−1</sup> g<sup>−1</sup> under AM 1.5G sunlight (100 mW cm<sup>−2</sup>), which is ≈48 times greater than that of YDT NPs (8.3 mmol g<sup>−1</sup> h<sup>−1</sup>). These results not only prove the potential that developing polymerized small-molecule acceptors with extended chain length as efficient photocatalysts, but also elucidate the importance of regulating linker length in designing high-performance photocatalysts.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"106 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202421994","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Developing organic semiconductor photocatalysts with alterable optical properties and excitonic behaviors for photocatalytic hydrogen evolution has received significant attention recently. Herein, three polymerized small-molecule acceptors (PSMAs) with different linker lengths, namely PY-1T, PY-2T and PY-3T, are designed and synthesized to construct nano-photocatalysts. In comparison with small-molecule YDT, these PSMAs exhibit broader absorption in both visible and near-infrared (NIR) light region as well as enlarged exciton diffusion length. In the meanwhile, the intramolecular charge transfer and separation in PSMAs is promoted by varying the linker length, leading to enhanced light harvesting and charge utilization. As a result, the single-component nano-photocatalyst based on PY-3T achieves an impressive average hydrogen evolution rate (HER) of 400.3 mmol h−1 g−1 under AM 1.5G sunlight (100 mW cm−2), which is ≈48 times greater than that of YDT NPs (8.3 mmol g−1 h−1). These results not only prove the potential that developing polymerized small-molecule acceptors with extended chain length as efficient photocatalysts, but also elucidate the importance of regulating linker length in designing high-performance photocatalysts.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有链节长度依赖性光催化活性的聚合小分子受体用于高性能太阳能氢气转换
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Liquid Water Molecular Connected Quantum Dots for Self-Driven Photodetector Heterogeneous Doping via Methyl-Encapsulated Fumed Silica Enabling Weak Solvated and Self-Purified Electrolyte in Long-Term High-Voltage Lithium Batteries Hierarchical Composite Polyimide Aerogels with Hyperbranched Siloxane for High Electromagnetic Wave Absorption Phosphorus-Mediated Selenium Dual Atoms for Bifunctional Oxygen Reactions and Long-Life Low-Temperature Energy Conversion Electrically Detachable and Fully Recyclable Pressure Sensitive Ionoadhesive Tapes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1