Scale-Compressed Technique in Finite-Difference Time-Domain Method for Multi-Layered Anisotropic Media

IF 1.8 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal on Multiscale and Multiphysics Computational Techniques Pub Date : 2024-12-31 DOI:10.1109/JMMCT.2024.3524598
Yuxian Zhang;Yilin Kang;Naixing Feng;Xiaoli Feng;Zhixiang Huang;Atef Z. Elsherbeni
{"title":"Scale-Compressed Technique in Finite-Difference Time-Domain Method for Multi-Layered Anisotropic Media","authors":"Yuxian Zhang;Yilin Kang;Naixing Feng;Xiaoli Feng;Zhixiang Huang;Atef Z. Elsherbeni","doi":"10.1109/JMMCT.2024.3524598","DOIUrl":null,"url":null,"abstract":"In this article, to breakthrough the constraint from conventional finite-difference time-domain (FDTD) method, we firstly propose a scale-compressed technique (SCT) working for the FDTD method, been called SCT-FDTD for short, to reduce three-dimensional (3-D) into one-dimensional (1-D) processes and capture the propagation coefficients. Combining with Maxwell's curl equations, the transverse wave vectors (<italic>k<sub>x</sub></i>, <italic>k<sub>y</sub></i>) can be defined as the fixed values, which let the curl operator become the curl matrix with only <italic>z</i>-directional derivative. The obvious advantage demonstrated by above is that it does not require excessive computational processes to obtain high-dimensional numerical results with reasonable accuracy. By comparing with commercial software COMSOL by the TE/TM illumination in multi-layered biaxial anisotropy, those results from SCT-FDTD method are entirely consistent. More importantly, the SCT-FDTD possesses less CPU time and lower computational resources for COMSOL.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"10 ","pages":"85-93"},"PeriodicalIF":1.8000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10819298/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, to breakthrough the constraint from conventional finite-difference time-domain (FDTD) method, we firstly propose a scale-compressed technique (SCT) working for the FDTD method, been called SCT-FDTD for short, to reduce three-dimensional (3-D) into one-dimensional (1-D) processes and capture the propagation coefficients. Combining with Maxwell's curl equations, the transverse wave vectors (kx, ky) can be defined as the fixed values, which let the curl operator become the curl matrix with only z-directional derivative. The obvious advantage demonstrated by above is that it does not require excessive computational processes to obtain high-dimensional numerical results with reasonable accuracy. By comparing with commercial software COMSOL by the TE/TM illumination in multi-layered biaxial anisotropy, those results from SCT-FDTD method are entirely consistent. More importantly, the SCT-FDTD possesses less CPU time and lower computational resources for COMSOL.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多层各向异性介质时域有限差分法中的比例压缩技术
在本文中,为了突破传统时域有限差分(FDTD)方法的限制,我们首先提出了一种适用于FDTD方法的尺度压缩技术(SCT),简称SCT-FDTD,将三维(3-D)过程简化为一维(1-D)过程并捕获传播系数。结合麦克斯韦旋度方程,将横波矢量(kx, ky)定义为固定值,使旋度算子成为只有z方向导数的旋度矩阵。以上所展示的明显的优点是不需要过多的计算过程就能获得精度合理的高维数值结果。在多层双轴各向异性的TE/TM光照下,SCT-FDTD方法与商业软件COMSOL的结果完全一致。更重要的是,SCT-FDTD具有更少的CPU时间和更少的COMSOL计算资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
27
期刊最新文献
Scale-Compressed Technique in Finite-Difference Time-Domain Method for Multi-Layered Anisotropic Media Experimental and Numerical Modeling of Magnetic Drug Targeting: Can We Trust Particle-Based Models? Table of Contents Editorial Rigorous Indoor Wireless Communication System Simulations With Deep Learning-Based Radio Propagation Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1