Active Learning-Based Control for Resiliency of Uncertain Systems Under DoS Attacks

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS IEEE Control Systems Letters Pub Date : 2024-12-26 DOI:10.1109/LCSYS.2024.3522953
Sayan Chakraborty;Weinan Gao;Kyriakos G. Vamvoudakis;Zhong-Ping Jiang
{"title":"Active Learning-Based Control for Resiliency of Uncertain Systems Under DoS Attacks","authors":"Sayan Chakraborty;Weinan Gao;Kyriakos G. Vamvoudakis;Zhong-Ping Jiang","doi":"10.1109/LCSYS.2024.3522953","DOIUrl":null,"url":null,"abstract":"In this letter, we present an active learning-based control method for discrete-time linear systems with unknown parameters under denial-of-service (DoS) attacks. For any DoS duration parameter, using switching systems theory and adaptive dynamic programming, an active learning-based control technique is developed. A critical DoS average dwell-time is learned from online input-state data, guaranteeing stability of the equilibrium point of the closed-loop system in the presence of DoS attacks with average dwell-time greater than or equal to the critical DoS average dwell-time. The effectiveness of the proposed methodology is illustrated via a numerical example.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"3297-3302"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10816478/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In this letter, we present an active learning-based control method for discrete-time linear systems with unknown parameters under denial-of-service (DoS) attacks. For any DoS duration parameter, using switching systems theory and adaptive dynamic programming, an active learning-based control technique is developed. A critical DoS average dwell-time is learned from online input-state data, guaranteeing stability of the equilibrium point of the closed-loop system in the presence of DoS attacks with average dwell-time greater than or equal to the critical DoS average dwell-time. The effectiveness of the proposed methodology is illustrated via a numerical example.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于主动学习的不确定系统DoS攻击弹性控制
在这封信中,我们提出了一种基于主动学习的控制方法,用于在拒绝服务(DoS)攻击下具有未知参数的离散时间线性系统。针对任意DoS持续时间参数,利用切换系统理论和自适应动态规划,提出了一种基于主动学习的控制方法。从在线输入状态数据中学习临界DoS平均驻留时间,保证了在平均驻留时间大于等于临界DoS平均驻留时间的DoS攻击下闭环系统平衡点的稳定性。通过一个算例说明了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
期刊最新文献
Data-Driven Analysis of T-Product-Based Dynamical Systems Novel Sufficient Conditions for Stabilization of Linear Positive Discrete-Time Systems Using Event-Triggered Control Modified Finite-Time and Prescribed-Time Convergence Parameter Estimators via the DREM Method Refined Eigenvalue Decay Bounds for Controllability Gramians of Sparsely-Actuated Symmetric LTI Systems Distributed Thompson Sampling Under Constrained Communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1