Sayan Chakraborty;Weinan Gao;Kyriakos G. Vamvoudakis;Zhong-Ping Jiang
{"title":"Active Learning-Based Control for Resiliency of Uncertain Systems Under DoS Attacks","authors":"Sayan Chakraborty;Weinan Gao;Kyriakos G. Vamvoudakis;Zhong-Ping Jiang","doi":"10.1109/LCSYS.2024.3522953","DOIUrl":null,"url":null,"abstract":"In this letter, we present an active learning-based control method for discrete-time linear systems with unknown parameters under denial-of-service (DoS) attacks. For any DoS duration parameter, using switching systems theory and adaptive dynamic programming, an active learning-based control technique is developed. A critical DoS average dwell-time is learned from online input-state data, guaranteeing stability of the equilibrium point of the closed-loop system in the presence of DoS attacks with average dwell-time greater than or equal to the critical DoS average dwell-time. The effectiveness of the proposed methodology is illustrated via a numerical example.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"3297-3302"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10816478/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In this letter, we present an active learning-based control method for discrete-time linear systems with unknown parameters under denial-of-service (DoS) attacks. For any DoS duration parameter, using switching systems theory and adaptive dynamic programming, an active learning-based control technique is developed. A critical DoS average dwell-time is learned from online input-state data, guaranteeing stability of the equilibrium point of the closed-loop system in the presence of DoS attacks with average dwell-time greater than or equal to the critical DoS average dwell-time. The effectiveness of the proposed methodology is illustrated via a numerical example.