A Sliding Mode Control Architecture for Autonomous Driving in Highway Scenarios Based on Quadratic Artificial Potential Fields

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS IEEE Control Systems Letters Pub Date : 2024-12-16 DOI:10.1109/LCSYS.2024.3518927
Elisabetta Punta;Massimo Canale;Francesco Cerrito;Valentino Razza
{"title":"A Sliding Mode Control Architecture for Autonomous Driving in Highway Scenarios Based on Quadratic Artificial Potential Fields","authors":"Elisabetta Punta;Massimo Canale;Francesco Cerrito;Valentino Razza","doi":"10.1109/LCSYS.2024.3518927","DOIUrl":null,"url":null,"abstract":"An approach for automated driving in highway scenarios based on Super-Twisting (STW) Sliding Mode Control (SMC) methodologies supported by the use of Artificial Potential Fields (APF) is presented. The use of APF allows us to propose an effective SMC solution based on the gradient tracking (GT) principle. In this regard, a novel formulation of the APF functions is introduced that exploits a sequence of attractive quadratic functions. This solution simplifies the computation of the fields and allows for trajectory generation with improved regularity properties. Extensive simulation tests, as well as comparisons with baseline and state of the art solutions, show the effectiveness of the proposed approach.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"2937-2942"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10804184","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10804184/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

An approach for automated driving in highway scenarios based on Super-Twisting (STW) Sliding Mode Control (SMC) methodologies supported by the use of Artificial Potential Fields (APF) is presented. The use of APF allows us to propose an effective SMC solution based on the gradient tracking (GT) principle. In this regard, a novel formulation of the APF functions is introduced that exploits a sequence of attractive quadratic functions. This solution simplifies the computation of the fields and allows for trajectory generation with improved regularity properties. Extensive simulation tests, as well as comparisons with baseline and state of the art solutions, show the effectiveness of the proposed approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于二次人工势场的高速公路自动驾驶滑模控制体系
提出了一种基于人工势场(APF)支持的超扭转滑模控制(SMC)方法的高速公路自动驾驶方法。APF的使用使我们能够提出基于梯度跟踪(GT)原理的有效SMC解决方案。在这方面,引入了一种新的APF函数公式,该公式利用了一系列有吸引力的二次函数。该解决方案简化了场的计算,并允许具有改进的规则性的轨迹生成。广泛的模拟测试以及与基线和最先进解决方案的比较表明,所提出的方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
期刊最新文献
Prescribed-Time Formation Control of Second-Order Multi-Agent Systems in Presence of Actuator Faults Proximal Dynamic Method With Time-Varying Coefficients for Equilibrium Problems: Fixed-Time Convergence Reliability-Guaranteed Fault Observer Design for Systems With Stochastic Parametric Uncertainty Fast Data-Driven Predictive Control for LTI Systems: A Randomized Approach Backstepping Controllers Based on Neural Operators for Coupled PDE-ODE Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1