Pio Ong;Max H. Cohen;Tamas G. Molnar;Aaron D. Ames
{"title":"Rectified Control Barrier Functions for High-Order Safety Constraints","authors":"Pio Ong;Max H. Cohen;Tamas G. Molnar;Aaron D. Ames","doi":"10.1109/LCSYS.2024.3518393","DOIUrl":null,"url":null,"abstract":"This letter presents a novel approach for synthesizing control barrier functions (CBFs) from high relative degree safety constraints: Rectified CBFs (ReCBFs). We begin by discussing the limitations of existing High-Order CBF approaches and how these can be overcome by incorporating an activation function into the CBF construction. We then provide a comparative analysis of our approach with related methods, such as CBF backstepping. Our results are presented first for safety constraints with relative degree two, then for mixed-input relative degree constraints, and finally for higher relative degrees. The theoretical developments are illustrated through simple running examples and an aircraft control problem.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"2949-2954"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10802967/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This letter presents a novel approach for synthesizing control barrier functions (CBFs) from high relative degree safety constraints: Rectified CBFs (ReCBFs). We begin by discussing the limitations of existing High-Order CBF approaches and how these can be overcome by incorporating an activation function into the CBF construction. We then provide a comparative analysis of our approach with related methods, such as CBF backstepping. Our results are presented first for safety constraints with relative degree two, then for mixed-input relative degree constraints, and finally for higher relative degrees. The theoretical developments are illustrated through simple running examples and an aircraft control problem.