Underwater Analyte Sensing Using a Phononic Crystal Waveguide-Based Interferometric Acoustic Spectrometer

Delfino Reyes;Hyeonu Heo;Ángel M. Martínez-Argüello;Yasuhisa Fujita;Purnima B. Neogi;Arup Neogi
{"title":"Underwater Analyte Sensing Using a Phononic Crystal Waveguide-Based Interferometric Acoustic Spectrometer","authors":"Delfino Reyes;Hyeonu Heo;Ángel M. Martínez-Argüello;Yasuhisa Fujita;Purnima B. Neogi;Arup Neogi","doi":"10.1109/OJUFFC.2024.3397248","DOIUrl":null,"url":null,"abstract":"This work introduces a 2D PnC-based acoustic spectrometer capable of analyzing small solution volumes (<inline-formula> <tex-math>$25~\\mu $ </tex-math></inline-formula>l) in aqueous environments with significative accuracy and reliability, thus addressing key limitations in current acoustic spectroscopic techniques. Optimally introducing rows of defects into the PnC structure enables guided acoustic modes to propagate at desired frequencies within the bandgap. We construct an acoustic interferometer to leverage the properties of acoustic cavities within these waveguides, which can configure and modulate wave propagation. Our approach involves harnessing the interference between acoustic waves in the two arms of a defects-based waveguide within a PnC, one arm containing an analyte cavity-holder. We demonstrate that the presence of an analyte (sucrose solutions at various concentrations) induces alterations in the acoustic properties of the cavity, leading to observable shifts in transmission characteristics of the propagating acoustic modes. We achieve exceptional spectral resolution through experimentation, facilitating highly sensitive acoustic sensing even with small analyte volumes (<inline-formula> <tex-math>$\\lt 25~\\mu $ </tex-math></inline-formula>l). We utilize finite element method simulations to validate our findings and predict spectral shifts resulting from modified acoustic interference. Additionally, we provide a phenomenological description using tight-binding models. Notably, our approach surpasses conventional PnC sensors like Mach-Zehnder interferometers by overcoming challenges associated with analyte uniformity.","PeriodicalId":73301,"journal":{"name":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","volume":"4 ","pages":"216-226"},"PeriodicalIF":2.9000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10522781","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10522781/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work introduces a 2D PnC-based acoustic spectrometer capable of analyzing small solution volumes ( $25~\mu $ l) in aqueous environments with significative accuracy and reliability, thus addressing key limitations in current acoustic spectroscopic techniques. Optimally introducing rows of defects into the PnC structure enables guided acoustic modes to propagate at desired frequencies within the bandgap. We construct an acoustic interferometer to leverage the properties of acoustic cavities within these waveguides, which can configure and modulate wave propagation. Our approach involves harnessing the interference between acoustic waves in the two arms of a defects-based waveguide within a PnC, one arm containing an analyte cavity-holder. We demonstrate that the presence of an analyte (sucrose solutions at various concentrations) induces alterations in the acoustic properties of the cavity, leading to observable shifts in transmission characteristics of the propagating acoustic modes. We achieve exceptional spectral resolution through experimentation, facilitating highly sensitive acoustic sensing even with small analyte volumes ( $\lt 25~\mu $ l). We utilize finite element method simulations to validate our findings and predict spectral shifts resulting from modified acoustic interference. Additionally, we provide a phenomenological description using tight-binding models. Notably, our approach surpasses conventional PnC sensors like Mach-Zehnder interferometers by overcoming challenges associated with analyte uniformity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于声子晶体波导干涉声学光谱仪的水下分析物传感
这项工作介绍了一种基于二维pnc的声学光谱仪,能够以极高的精度和可靠性分析水环境中的小溶液体积($25~\mu $ l),从而解决了当前声学光谱技术的关键局限性。在PnC结构中最优地引入缺陷行,可以使引导声模式在带隙内以所需的频率传播。我们构建了一个声学干涉仪来利用这些波导中的声腔的特性,它可以配置和调制波的传播。我们的方法包括利用PnC中基于缺陷的波导的两条臂中的声波之间的干扰,其中一条臂包含分析物空腔支架。我们证明了分析物(不同浓度的蔗糖溶液)的存在会引起腔体声学特性的改变,导致传播声学模式的传输特性发生可观察到的变化。我们通过实验获得了卓越的光谱分辨率,即使在很小的分析物体积($\lt 25~\mu $ l)下也能实现高灵敏度的声学传感。我们利用有限元方法模拟来验证我们的发现,并预测修正声干扰导致的光谱偏移。此外,我们使用紧密结合模型提供现象学描述。值得注意的是,我们的方法通过克服与分析物均匀性相关的挑战,超越了传统的PnC传感器,如马赫-曾德干涉仪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of Training Data Composition on Deep Learning-Based Cardiac Motion Estimation The Added Value of Cascaded Plane Wave Imaging for Autocorrelation- and Cross-Correlation-Based Velocity Vector Imaging Simultaneous Estimation of Blood Pressure and Volume Flow Using Deep Learning- Enhanced Ultrafast Ultrasound Miniaturized Ultrasonic Transducer With PMN-PT Embedded Into Flexible LCP Substrate for Biocompatible Applications Active Inference for Closed-Loop Transmit Beamsteering in Fetal Doppler Ultrasound
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1