A ternary C-SnO2–g-C3N4–MoS2 heterostructure for highly efficient photo/electrocatalytic hydrogen production†

IF 4.1 3区 材料科学 Q2 CHEMISTRY, PHYSICAL Sustainable Energy & Fuels Pub Date : 2024-12-17 DOI:10.1039/D4SE01532K
Najrul Hussain, Mohammad Ali Abdelkareem, A. G. Olabi and Hussain Alawadhi
{"title":"A ternary C-SnO2–g-C3N4–MoS2 heterostructure for highly efficient photo/electrocatalytic hydrogen production†","authors":"Najrul Hussain, Mohammad Ali Abdelkareem, A. G. Olabi and Hussain Alawadhi","doi":"10.1039/D4SE01532K","DOIUrl":null,"url":null,"abstract":"<p >This work reported the design and fabrication of a ternary heterostructure for efficient photocatalytic and electrocatalytic hydrogen production. Here, the C-SnO<small><sub>2</sub></small>–g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>–MoS<small><sub>2</sub></small> heterostructure with unique electronic and optical properties is developed using a simple two-step synthesis strategy, in which first a C-doped SnO<small><sub>2</sub></small> nanostructure (C-SnO<small><sub>2</sub></small>) was prepared by thermal decomposition and then a hybrid ternary heterostructure of C-SnO<small><sub>2</sub></small> with layered 2D materials g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> and MoS<small><sub>2</sub></small> was developed by using a simple solution chemistry approach. The reported C-SnO<small><sub>2</sub></small>–g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>–MoS<small><sub>2</sub></small> hybrid heterostructure exhibited an enhanced photocatalytic activity of 11.85 mmol g<small><sup>−1</sup></small> hydrogen production and 17.21% apparent quantum efficiency (AQE) due to improved catalytically active sites, boosted charge transfer efficiency at the interface, suppression of charge carrier recombination, and synergistic interaction between the components. Moreover, the C-SnO<small><sub>2</sub></small>–g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>–MoS<small><sub>2</sub></small> heterostructure material showed outstanding electrocatalytic activity for hydrogen production (HER), requiring an overpotential of −0.18 V <em>vs.</em> RHE to accomplish a current density of 10 mA cm<small><sup>−2</sup></small>. The superior HER performance of the heterostructure is ascribed to its more electrochemically active surface sites, combined with the synergistic interaction among its components.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 2","pages":" 651-661"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/se/d4se01532k","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This work reported the design and fabrication of a ternary heterostructure for efficient photocatalytic and electrocatalytic hydrogen production. Here, the C-SnO2–g-C3N4–MoS2 heterostructure with unique electronic and optical properties is developed using a simple two-step synthesis strategy, in which first a C-doped SnO2 nanostructure (C-SnO2) was prepared by thermal decomposition and then a hybrid ternary heterostructure of C-SnO2 with layered 2D materials g-C3N4 and MoS2 was developed by using a simple solution chemistry approach. The reported C-SnO2–g-C3N4–MoS2 hybrid heterostructure exhibited an enhanced photocatalytic activity of 11.85 mmol g−1 hydrogen production and 17.21% apparent quantum efficiency (AQE) due to improved catalytically active sites, boosted charge transfer efficiency at the interface, suppression of charge carrier recombination, and synergistic interaction between the components. Moreover, the C-SnO2–g-C3N4–MoS2 heterostructure material showed outstanding electrocatalytic activity for hydrogen production (HER), requiring an overpotential of −0.18 V vs. RHE to accomplish a current density of 10 mA cm−2. The superior HER performance of the heterostructure is ascribed to its more electrochemically active surface sites, combined with the synergistic interaction among its components.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高效光电催化制氢的三元C-SnO2-g-C3N4-MoS2异质结构
本文报道了用于高效光催化和电催化制氢的三元异质结构的设计和制备。本文采用简单的两步合成策略,首先通过热分解制备c掺杂SnO2纳米结构(C-SnO2),然后采用简单的溶液化学方法制备C-SnO2与层状二维材料g-C3N4和MoS2的杂化三元异质结构,开发出具有独特电子和光学性能的C-SnO2异质结构。所报道的C-SnO2-g-C3N4-MoS2杂化异质结构由于改善了催化活性位点、提高了界面电荷转移效率、抑制了载流子重组以及组分之间的协同相互作用,其光催化活性提高了11.85 mmol g−1,表观量子效率(AQE)提高了17.21%。此外,C-SnO2-g-C3N4-MoS2异质结构材料在制氢(HER)方面表现出出色的电催化活性,相对于RHE需要- 0.18 V的过电位才能实现10 mA cm - 2的电流密度。异质结构优越的HER性能归因于其更活跃的电化学表面位点,以及其组分之间的协同相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sustainable Energy & Fuels
Sustainable Energy & Fuels Energy-Energy Engineering and Power Technology
CiteScore
10.00
自引率
3.60%
发文量
394
期刊介绍: Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.
期刊最新文献
A new chapter for Sustainable Energy & Fuels Synergistic stabilization of lead halide perovskites by univalent cations under electric field stress Electrolyte additives in Li-ion batteries: from mechanisms to application Optimizing π-conjugated system of spiro-based HTMs; structures and concept towards boosting efficiency of PSCs Optimising supercritical water gasification of biomass: exploring heating strategy through a quantitative kinetic modelling approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1