Wen Teng, Chengxun Xu, Shikai Liu, Hong Yu, Lingfeng Kong, Qi Li
{"title":"DNA Methylation of Somatic Tissues in Oysters is Influenced by Sex and Heredity","authors":"Wen Teng, Chengxun Xu, Shikai Liu, Hong Yu, Lingfeng Kong, Qi Li","doi":"10.1007/s10126-024-10409-6","DOIUrl":null,"url":null,"abstract":"<div><p>The influence of sex and heredity on DNA methylation in the somatic tissues of mice has been well-documented, with similar hereditary effects reported in honeybees. However, the extent to which these factors affect DNA methylation in molluscan somatic tissues remains poorly understood. In this study, we investigated genomic DNA methylation patterns in the adductor muscle of two genetically distinct oyster strains using whole-genome bisulfite sequencing (WGBS). Our analysis identified significant differences in DNA methylation between sexes, with females exhibiting a global reduction compared to males. Furthermore, approximately half of the differentially methylated sites between the two parental strains were conserved in their offspring. Regions with differential methylation in parents typically exhibited intermediate methylation levels in the F1 progeny, whereas consistently methylated regions in parents maintained similar methylation levels in their progeny. These findings suggest that offspring DNA methylation is strongly influenced by parental methylation profiles, highlighting its potential role in sexual determination in oysters.</p></div>","PeriodicalId":690,"journal":{"name":"Marine Biotechnology","volume":"27 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Biotechnology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10126-024-10409-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The influence of sex and heredity on DNA methylation in the somatic tissues of mice has been well-documented, with similar hereditary effects reported in honeybees. However, the extent to which these factors affect DNA methylation in molluscan somatic tissues remains poorly understood. In this study, we investigated genomic DNA methylation patterns in the adductor muscle of two genetically distinct oyster strains using whole-genome bisulfite sequencing (WGBS). Our analysis identified significant differences in DNA methylation between sexes, with females exhibiting a global reduction compared to males. Furthermore, approximately half of the differentially methylated sites between the two parental strains were conserved in their offspring. Regions with differential methylation in parents typically exhibited intermediate methylation levels in the F1 progeny, whereas consistently methylated regions in parents maintained similar methylation levels in their progeny. These findings suggest that offspring DNA methylation is strongly influenced by parental methylation profiles, highlighting its potential role in sexual determination in oysters.
期刊介绍:
Marine Biotechnology welcomes high-quality research papers presenting novel data on the biotechnology of aquatic organisms. The journal publishes high quality papers in the areas of molecular biology, genomics, proteomics, cell biology, and biochemistry, and particularly encourages submissions of papers related to genome biology such as linkage mapping, large-scale gene discoveries, QTL analysis, physical mapping, and comparative and functional genome analysis. Papers on technological development and marine natural products should demonstrate innovation and novel applications.